> PENSOFT.

Volume in progress

ISSN 1314-4049 (online) ISSN 1314-4057 (print)

Select: All None Download Custion Note Image: Select: All None Image: Select: All None Select: All None Image: Select: All None	MycoKeys	117 (2025)		Sort	Publication date newes	(v		
Itesactify Article Morpho-molecular analyses reveal two novel species and two new records of Dictyosporiaceae (Pleosporales) from Dulongjiang River in northwestern Yunnan Province, China Image: Disparama Bhat Dan-Feng Bao, Hong-Wei Shen, Yuan Feng, Zong-Long Luo Part of: Exploring the Hidden Fungal Diversity: Biodiversity. Taxonomy, and Phylogeny of Saprobic Fungi 10.3807/mycokeys.117.145587 30-04-2025 Image: Diversity Peprint: € 11,00 Image: Diversity Texeth Article Image: Diversity Morphological and molecular analyses revealed four new wood-inhabiting fungal species (Hymenochaetales, Basidiomycota) from Yunnan Image: One findence fungation of the Hidden Fungation of the String Thang, Orang, Orangin Zhao Part of: Exploring the Hidden Fungation (Diversity: Biodiversity, Taxonomy, and Phylogeny of Saprobic Funging fungation) Image: Diversity Morphological and molecular analyses revealed four new wood-inhabiting fungation Image: One findence fungation, Oracle (Hymenochaetales, Basidiomycota) from Yunnan Image: One findence fungation, Oracle (Hymenochaetales, Basidiomycota) from Yunnan Image: One findence fungation, Oracle (Hymenochaetales, Basidiomycota) from Yunnan Image: One findence fungation, Oracle (Hymenochaetales, Basidiomycota) from Yunnan Image: One findence fungation, Oracle (Hymenochaetales, Basidiomycota) from Yunnan Image: One findence fungation <th></th> <th></th> <th></th> <th>Select: All None</th> <th>Download Creation III</th> <th>R. PDF</th>				Select: All None	Download Creation III	R. PDF		
Morpho-molecular analyses reveal two novel species and two new records of Dictyosporiaceae (Pleosporales) from Dulongjiang River in northwestern Yunnan Province, China Intervention 	1 122	Research Article						
 Dictyosporiaceae (Pleosporales) from Dulongjiang River in northwestern Yunnan Province, China Ving Wang O. jayarama Bhat, Dan-Feng Bao, Hong-Wei Shen, Yuan Feng Zong-Long Luo Part of: Exploring the Hidden Fungai Diversity: Biodiversity. Taxonomy, and Phylogeny of Saprobic Fungi 10.3807/mycokeys.117.145587 30-04-2025 Unique: 25 Total: 29 Peppier: (11,00 1:1-27) Intel Morphological and molecular analyses revealed four new wood-inhabiting fungal species (Hymenochaetales, Basidiomycota) from Yunnan Vinglian Deng Meng Chen, Clinfeng Liu, Qizhen Li, Scheng Zhang, Haisheng Yuan, Changlin Zhao Part of: Exploring the Hidden Fungal Diversity. Biodiversity. Taxonomy, and Phylogeny of Saprobic Fungi 10.3897/mycokeys.117.140236 30-04-2025 	×18-3	Morpho-molecular an	nalyses reveal two	o novel species and two n	ew records of			
Province, China Ying Wang, D. Jayarama Bhat, Dan-Feng Bao, Hong-Wei Shen, Yuan Feng, Zong-Long Luo Part of: Exploring the Hidden Fungal Diversity: Biodiversity. Taxonomy, and Phylogeny of Saprobic Fungi 10.3807/mycokeys.117.145587 30-04-2025 Unique: 25 [Total: 29] Reprint: <11.00 1-27 Intel 	-1600	Dictyosporiaceae (Ple	Dictyosporiaceae (Pleosporales) from Dulongjiang River in northwestern Yunnan					
 Ving Wang, O. Jayarama Bhat, O. Dan-Feng Bao, O. Hong-Wei Shen, Yuan Feng, O. Zong-Long Luo Part of: Exploring the Hidden Fungal Diversity: Biodiversity. Taxonomy, and Phylogeny of Saprobic Fungi 10.3807/mycokeys. 117.145587 30-04-2025 Unique: 25 Total: 29 Reprint: (11,00 1-27 Intel Intel Morphological and molecular analyses revealed four new wood-inhabiting fungal species (Hymenochaetales, Basidiomycota) from Yunnan Vingkian Deng, O. Meng Chen, O. Linfeng Liu, Qizhen Li, O. Scheng Zhang, O. Haisheng Yuan, O. Changlin Zhao Part of: Exploring the Hidden Fungal Diversity. Biodiversity. Taxonomy, and Phylogeny of Saprobic Fungi 10.3897/mycokeys. 117.146236 30-04-2025 		Province, China						
Part of: Exploring the Hidden Fungal Diversity: Biodiversity. Taxonomy, and Phylogeny of Saprobic Fungi 10.3897/mycakeys.117.145587 10.3897/mycakeys.117.145287 10.3897/mycakeys.117.145287 10.3897/mycakeys.117.145287 10.3897/mycakeys.117.145287 10.3897/mycakeys.117.145287		🥝 Ving Wang, 🔞 D. Jayarama Bhat, 🔒 Dan-Feng Bao, 😑 Hong-Wei Shen, Yuan Feng, 😌 Zong-Long Luo						
10.3897/inycokeys.117.145587 30-04-2025 Image: 25 Total: 29 Perprint: < 11,00		Part of: Exploring the Hidden	Fungal Diversity: Blodiv	versity. Taxonomy, and Phylogeny o	of Saprobic Fungi			
Image: 25 Total: 29 Total: 29 Total: 29 1-27 Image: 27 Image: 27<		10.3897/mycokeys.117.145587	30-04-2025					
Research Wtide Morphological and molecular analyses revealed four new wood-inhabiting fungal species (Hymenochaetales, Basidiomycota) from Yunnan Image: Im		@ Unique: 25 Total: 29	₩ Reprint € 11,00	1-27	HTML KML	POF		
Morphological and molecular analyses revealed four new wood-inhabiting fungal species (Hymenochaetales, Basidiomycota) from Yunnan © Vinglian Deng, © Meng Chen, © Linfeng Liu, Qizhen Li, © Scheng Zhang, © Haisheng Yuan, © Changlin Zhao Part of: Exploring the Hidden Fungal Diversity: Biodiversity, Taxonomy, and Phylogeny of Saprobic Fungi 10.3897/mycokeys.117.146236 20-04-2025	33.70S	Research Article						
Species (Hymenochaetales, Basidiomycota) from Yunnan Vinglian Deng, Meng Chen, Clinfeng Liu, Qizhen Li, O Sicheng Zhang, C Haisheng Yuan, C Changlin Zhao Part of: Exploring the Hidden Fungal Diversity: Biodiversity, Taxonomy, and Phylogeny of Saprobic Fungi 10.3897/mycokeys.117.146236 20-04-2025	-Territor	Morphological and m	olecular analyses	revealed four new wood	-inhabiting fungal			
S Vinglan Deng, Meng Chen, C Linfeng Liu, Qizhen Li, Scheng Zhang, Haisheng Yuan, C Changlin Zhao Part of: Exploring the Hidden Fungal Diversity: Biodiversity, Taxonomy, and Phylogeny of Saprobic Fungi 10.3897/mycokeys.117.146236 10-04-2025	Real Providence	species (Hymenocha	etales, Basidiomy	cota) from Yunnan				
Part of: Exploring the Hidden Fungal Diversity: Biodiversity, Taxonomy, and Phylogeny of Saprobic Fungi		an, 🥝 Changlin Zhao						
10.3897/mycokeys.117,146236 🛗 30-04-2025	Part of: Exploring the Hidden Fungal Diversity: Biodiversity, Taxonomy, and Phylogeny of Saprobic Fungi							
		10.3897/mycokeys.117,146236	m 30-04-2025					
② Unique: 28 Total: 32		Dirique: 28 Total: 32	₩ Reprint € 14,00	29-66	HTML XM	PDF		

Research Article

Morphological and molecular analyses revealed four new woodinhabiting fungal species (Hymenochaetales, Basidiomycota) from Yunnan

Yinglian Deng^{1,20}, Meng Chen²⁰, Linfeng Liu²⁰, Qizhen Li², Sicheng Zhang²⁰, Haisheng Yuan³⁰, Changlin Zhao^{1,20}

- 1 Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, the Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- 2 College of Forestry, Southwest Forestry University, Kunming 650224, China
- 3 Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China

Corresponding authors: Changlin Zhao (fungi@swfu.edu.cn); Haisheng Yuan (hsyuan@iae.ac.cn)

Abstract

This article is part of: Exploring the Hidden Fungal Diversity: Biodiversity, Taxonomy, and Phylogeny of Saprobic Fungi

Edited by Samantha C. Karunarathna, Danushka Sandaruwan Tennakoon, Ajay Kumar Gautam

Academic editor: Danushka Sandaruwan Tennakoon Received: 8 January 2025 Accepted: 7 April 2025 Published: 30 April 2025

Citation: Deng Y, Chen M, Liu L, Li Q, Zhang S, Yuan H, Zhao C (2025) Morphological and molecular analyses revealed four new wood-inhabiting fungal species (Hymenochaetales, Basidiomycota) from Yunnan. MycoKeys 117: 29–66. https://doi. org/10.3897/mycokeys.117.146236

Copyright: [©] Yinglian Deng et al. This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International – CC BY 4.0). Hymenochaetales is one of the fungal orders mainly composed of wood-inhabiting macrofungi within the class Agaricomycetes, Basidiomycota. Four new Hymenochaetales wood-inhabiting fungi, *Hymenochaete bannaensis*, *Lyomyces asiaticus*, *Peniophorella albohymenia*, and *P. punctata* collected from China are proposed based on morphological characteristics and molecular evidence. *H. bannaensis* is distinguished by flocculent basidiomata with cinnamon to yellowish brown to rust-brown hymenial surface, generative hyphae with simple septa and broadly ellipsoid to globose basidiospores. *L. asiaticus* is characterized by the membranaceous basidiomata with white to cream hymenial surface with tuberculate, a monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores. In addition, *P. albohymenia* is delimited by membranaceous basidiomata with white hymenial surface, four types of cystidia as stephanocyst, fusiform, cylindrical and capitate, and ellipsoid basidiospores. *P. punctata* is unique in the membranaceous, punctate basidiomata with white to pale yellow hymenial surface, fusiform cystidia, and allantoid basidiospores. Sequences of ITS and nLSU rRNA markers based on phylogenetic analyses were performed using the Maximum Likelihood, Maximum Parsimony and Bayesian Inference methods.

Key words: Biodiversity, new taxa, phylogenetic analyses, Southwestern China, taxonomy

Introduction

In terms of taxonomic status, wood inhabiting fungi mainly refer to the classification within the class Agaricomycetes, Basidiomycota (James et al. 2020; Dai et al. 2021; Wijayawardene et al. 2022; Yuan et al. 2023; Zhao et al. 2024; Dai et al. 2025). Most of basidiomycetes are white-rot fungi, which are responsible for degradation of the lignin in the forest ecosystems (Floudas et al. 2012; Osman and El-Nuby 2023). Rot type can be inferred from direct examination of wood substrates or from cultural tests, in which it was classified to three groups, brown rot, soft rot, and white rot fungi, and all species of Hymenochaetales cause white rot (Justo et al. 2017; Wang et al. 2023a).

Hymenochaetales is one of the fungal orders being mainly composed of wood-inhabiting fungi within Agaricomycetes, Basidiomycota (Wang et al. 2023b; Zhou et al. 2023; Dai et al. 2025). This order includes fascinating basidiomycete fungi that occupies a distinct ecological niche, in which there are many variations of the basidiomata types within Hymenochaetales (Larsson et al. 2006; Wu et al. 2019a; Guan et al. 2023). Hymenochaetales comprises a number of representative wood-inhabiting fungal taxa, which includes diverse hymenophoral morphologies as hydnoid, corticioid, and polyporoid (Zhao et al. 2023a; Yuan et al. 2024). Currently, 14 families, 83 genera, and 1205 species, are accepted in Hymenochaetales, and include wood-inhabiting and ectomycorrhizal fungi (Hibbett et al. 2014; Wang et al. 2023a; He et al. 2024). However, the species diversity has been well explored worldwide, therefore more new taxa need to be discovered. Furthermore, the order has various morphological characters for basidiomata, in which all characteristics are also found in the other orders (Polyporales, Russulales) in Agaricomycetes (Wu and Yuan 2020).

On the basis of the frequent inclusion of data from DNA sequences in many phylogenetic studies, the classification of the wood-inhabiting fungi has been updated continuously (Yurchenko et al. 2020a; Mao et al. 2023; Zhang et al. 2023b). Wang et al. (2023a) implemented a multi-locus phylogenetic analysis on the basis of nSSU, ITS, nLSU, mt-SSU, tef1a, rpb1, and rpb2 genes and updated the taxonomic framework of Hymenochaetales. The results have shown that 45 genera were accepted in Hymenochaetaceae, including the genus Hymenochaete (Wang et al. 2023a), and Hymenochaetaceae comprised three major genera Phellinus sensu lato, Hymenochaete and Inonotus sensu lato (Larsen and Cobb-Poulle 1990; Léger 1998; Ryvarden 2005; Wu et al. 2022a). The results showed that the genus Hymenochaete (Hymenochaetaceae) was closely grouped with Hymenochaetopsis S.H. He & Jiao Yang, and they were almost indistinguishable in morphology (Larsson et al. 2006; He and Dai 2012; Baltazar et al. 2014; Parmasto et al. 2014; Yang et al. 2016). According to the anatomical features, the genus has been divided into four sections, Hymenochaete, Fultochaete Escobar ex Léger, Gymnochaete Escobar ex Léger and Paragymnochaete Léger (Léger 1998; He and Dai 2012).

Molecular studies of *Hyphoderma* Wallr. revealed that the reinstatement of *Peniophorella* resulted in 19 new combinations in the genus *Peniophorella* and all species nested in the hymenochaetoid clade (Larsson 2007b). Miettinen et al. (2019) revealed that *P. praetermissa* (P. Karst.) K.H. Larss. and *P. tsugae* (Burt) K.H. Larss. grouped together and clustered in Hymenochaetales. Telleria et al. (2012) studied *Hyphoderma* and its discrimination from closely related taxa and indicated that eight *Peniophorella* taxa were closely grouped and distinct from *Hyphoderma* s.s. Justo et al. (2017) revised the family-level classification of the order Polyporales (Basidiomycota) and proposed that 20 species were classified in *Peniophorella* located in the family Hyphodermataceae (Hymenochaetales). Morphological studies and phylogenetic analyses reported six new taxa of *Peniophorella* and displayed the taxonomic status for the new taxa within the genus (Guan et al. 2020; Xu et al. 2020; Yurchenko et al. 2020a). Wang et al. (2023a) proposed that the genus *Peniophorella* bears affinity to a new family Peniophorellaceae.

Due to the lack of sequences of some wood-inhabiting fungal taxa, it is difficult to clearly distinguish many genera in Schizoporaceae, therefore, a broad concept of *Hyphodontia* s.l. was accepted (Yurchenko and Wu 2014; Riebesehl et al. 2015; Riebesehl and Langer 2017). Based on the nuclear DNA sequence data, six well-distinguished clades as the *Hastodontia* clade, the *Hyphodontia* clade, the *Lagarobasidium* clade, the *Kneiffiella-Alutaceodontia* clade, the *Xylodon-Lyomyces-Rogersella* clade and the *Xylodon-Schizopora-Palifer* clade, were included (Yurchenko and Wu 2014). Inferred from the phylogenetical studies for *Hyphodontia* s.l., the genus *Lyomyces* was nested within the *Xylodon-Lyomyces-Rogersella* clade (Yurchenko and Wu 2014). Riebesehl et al. (2019) clarified the generic concept and their phylogenetic reconstruction of *Lyomyces* and the species *L. sambuci* (Pers.) P. Karst. was sister to *L. crustosus* (Pers.) P. Karst (Riebesehl et al. 2019).

In this study, four taxa from three genera of Hymenochaetales were collected from Yunnan, China and the phylogenetic relationships are studied based on ITS-nLSU gene regions. Therefore, exploring the diversity and taxonomic status of these new taxa using different characters will be significant for wood-inhabiting fungi in Yunnan. Morphology and phylogenetic analyses reveal that these are new to science.

Materials and methods

Sample collection and morphology examination

Fresh basidiomata of the fungi were collected from Xishuangbanna and Zhaotong of Yunnan Province, China, from September 2023 to January 2024. Specimens were dried in an electric food dehydrator at 40 °C, then sealed and stored in an envelope bag and deposited in the herbarium of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, China. Macromorphological descriptions are based on field notes and photos captured in the field and lab. Color terminology was followed as mentioned by Petersen (1996). Micromorphological data were obtained from the dried specimens when observed under a light microscope (Nikon Ni, Tokyo, Japan) following the previous study (Cui et al. 2019; Zhao et al. 2023b; Dong et al. 2024). The following abbreviations are used: KOH = 5% potassium hydroxide water solution, CB = Cotton Blue, CB- = acyanophilous, IKI = Melzer's Reagent, IKI- = both inamyloid and indextrinoid, L = mean spore length (arithmetic average for measured spores), W = mean spore width (arithmetic average for measured spores), Q = variation in the L/W ratios between the specimens studied and n = a/b (number of spores (a) measured from given number (b) of specimens). Standardized sampling of microstructures for measurement includes basidiospores (30), basidia, basidioles and cystidia (5), setae and hyphae diameter (10) (Cui et al. 2019; Zhao et al. 2023b; Dong et al. 2024).

Molecular phylogeny

The EZNA HP Fungal DNA Kit (Omega Biotechnologies Co., Ltd., Kunming, China) was used to extract DNA with some modifications from the dried specimens. The nuclear ribosomal ITS region was amplified with primers ITS5 and ITS4 (White et al. 1990). The PCR procedure for ITS was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 58 °C for 45 s and 72 °C for 1 min, and a final extension of 72 °C for 10 min. The nuclear nLSU region was amplified with primer pair LR0R and LR7 (Vilgalys and Hester 1990; Rehner and Samuels 1994). The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 48 °C for 1 min and 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR procedure for ITS and nLSU followed previous study (Zhao and Wu 2017). All of the newly generated sequences were deposited in NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/) (Table 1).

The sequences were aligned in MAFFT version 7 (Katoh et al. 2019) using the G-INS-i strategy. The alignment was adjusted manually using AliView version 1.27 (Larsson 2014). The combined dataset was deposited in TreeBASE (https://treebase.org/treebase-web/home.html; submission ID 32063). Sequences of *Boletopsis leucomelaena* (Pers.) Fayod and *Thelephora ganbajun* M. Zang, retrieved from GenBank were used as the outgroup in the ITS+nLSU analysis (Fig. 1; Dong et al. 2024). Sequences of *Fomitiporia bannaensis* Y.C. Dai and *F. punctata* (P. Karst.) Murrill, retrieved from GenBank were used as the outgroup in the ITS+nLSU analysis (Fig. 2; Nie et al. 2017). Sequences of *Fasciodontia brasiliensis* Yurchenko & Riebesehl and *F. bugellensis* (Ces.) Yurchenko, Riebesehl & Langer retrieved from Gen-Bank were used as the outgroup in the ITS+nLSU analysis (Fig. 3; Yuan et al. 2024). Sequences of *Basidioradulum mayi* Xue W. Wang & L.W. Zhou and *B. radula* (Fr.) Nobles retrieved from GenBank were used as the outgroup in the ITS+nLSU analysis (Fig. 4; Wang et al. 2023a; Dong et al. 2024).

Maximum Parsimony (MP), Maximum Likelihood (ML), and Bayesian Inference (BI) analyses were applied to the combined three datasets following a previous study (Dong et al. 2024). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5,000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using bootstrap (BT) analysis with 1,000 pseudo replicates (Felsenstein 1985). Descriptive tree statistics of tree length (TL), composite consistency index (CI), composite retention index (RI), composite rescaled consistency index (RC), and composite homoplasy index (HI) were calculated for each maximum parsimonious tree generated. The combined dataset was also analysed using Maximum Likelihood (ML) in RAxML-HPC2 through the CIPRES Science Gateway (Miller et al. 2012). Branch support (BS) for the ML analysis was determined by 1000 bootstrap pseudo replicates.

MrModeltest 2.3 (Nylander 2004) was used to determine the best-fit evolution model for each dataset for the purposes of Bayesian inference (BI) which was performed using MrBayes 3.2.7a with a GTR+I+G model of DNA substitution and a gamma distribution rate variation across sites (Ronquist et al. 2012). A total of four Markov chains were run for two runs from random starting trees for 1 million generations for ITS+nLSU (Fig. 1); 0.8 million generations for ITS+nLSU (Figs 2, 3); and 4.4 million generations for ITS+nLSU (Fig. 4) with trees and parameters sampled every 1,000 generations. The first quarter of all of the generations were discarded as burn-ins. A majority rule consensus tree

 Table 1. List of species, specimens and GenBank accession numbers of sequences used in this study. [* Indicates type materials].

- ·	Sample no.	GenBank accessions no.			
Species name		ITS	nLSU	References	
Basidioradulum mayi	LWZ 20180510-18	MN017785	MN017792	Wang et al. (2023a)	
B. radula	LWZ 20201017-62	ON063684	ON063884	Wang et al. (2023a)	
Boletopsis leucomelaena	PBM2678	DQ484064	DQ154112	Liu et al. (2022)	
Fasciodontia brasiliensis	MSK-F 7245a	MK575201	MK598734	Yurchenko et al. (2020a)	
F. bugellensis	KAS-FD 10705a	MK575203	MK598735	Yurchenko et al. (2020a)	
F. bannaensis	MUCL 46950	GU461943	EF429218	Nie et al. (2017)	
F. gabonensis	MUCL 47576	GU461971	GU461990	Wang et al. (2023a)	
F. punctate	MUCL 47629	GU461950	GU461982	Nie et al. (2017)	
F. rhamnoides	LWZ 20180905-15	ON063643	ON063842	Wang et al. (2023a)	
Hydnoporia pinicola	CLZhao 22505	OR094493	OR449924	Dong et al. (2024)	
H. pinicola	CLZhao 27154	OR094494	OR449925	Dong et al. (2024)	
H. yunnanensis	CLZhao 6123 *	OR094498	OR449929	Dong et al. (2024)	
H. yunnanensis	CLZhao 6227	OR094499	OR449930	Dong et al. (2024)	
Hymenochaete acerosa	He 338	JQ279543	JQ279657	He et al. (2017)	
H. adusta	He 207	JQ279523	KU975497	He et al. (2017)	
H. angustispora	Dai 17045	MF370592	MF370598	He et al. (2017)	
H. angustispora	Dai 17049	MF370593	MF370599	He et al. (2017)	
H. anomala	He 592	JQ279566	JQ279650	He et al. (2017)	
H. asetosa	Dai 10756	JQ279559	JQ279642	He et al. (2017)	
H. attenuate	He 28	JQ279526	JQ279633	He et al. (2017)	
H. bambusicola	He 4116	KY425674	KY425681	He et al. (2017)	
H. berteroi	He 1488	KU975459	KU975498	He et al. (2017)	
H. biformisetosa	He 1445	KF908247	KU975499	Yang and He (2014)	
H. boddingii	MEH 66068	MN030343	MN030345	Du et al. (2021)	
H. boddingii	MEH 69996	MN030341	MN030347	Du et al. (2021)	
H. borbonica	CBS 731.86	MH862026	MH873716	Du et al. (2021)	
H. cana	He 1305	KF438169	KF438172	He et al. (2017)	
H. cinnamomea	He 755	JQ279548	JQ279658	He et al. (2017)	
H. colliculosa	Dai 16427	MF370595	MF370602	He et al. (2017)	
H. colliculosa	Dai 16428	MF370596	MF370603	He et al. (2017)	
H. conchata	MEH 70144	MF373838	-	Du et al. (2021)	
H. contiformis	He 1166	KU975461	KU975501	He et al. (2017)	
H. cruenta	He 766	JQ279595	JQ279681	He et al. (2017)	
H. cyclolamellata	Cui 7393	JQ279513	JQ279629	He et al. (2017)	
H. damicornis	URM 84261	KC348466	_	Du et al. (2021)	
H. damicornis	URM 84263	KC348467	_	Du et al. (2021)	
H. denticulata	He 1271	KF438171	KF438174	He et al. (2017)	
H. dracaenicola	Dai 22090	MW559797	MW559802	Du et al. (2021)	
H. dracaenicola	Dai 22096	MW559798	MW559803	Du et al. (2021)	
H duportii	AFTOL ID666	DO404386	AY635770	He et al (2017)	
H enichlora	He 525	10279549	10279659	He and Dai (2012)	
	Ha 525	10270507	10279692	He and Dai (2012)	
H fuliginoss	Lo 1100	KI 1075465	KI 1075504	He and Dai (2012)	
		10070545	0070(40	Du et al. (2021)	
n. Tuiva	He 640	JQ279565	JU2/9648	He and Dai (2012)	
н. giobispora	He 911	-	KU9/5508	Du et al. (2021)	
H. huangshanensis	He 432	JQ279533	JQ2/9671	He and Dai (2012)	
H. innexa	He 555	JQ279584	JQ279674	He and Dai (2012)	
H. japonica	He 245	JQ279590	JQ279680	He and Dai (2012)	
H. legeri	He 960	KU975469	KU975511	He et al. (2017)	
H. longispora	He 217	JQ279537	KU975514	He and Dai (2012)	
H. luteobadia	He 8	JQ279569	KU975515	He and Dai (2012)	

0	Sample no.	GenBank accessions no.		
Species name		ITS	nLSU	References
H. macrochloae	ARAN-Fungi 7079	MF990738	MF990743	Du et al. (2021)
H. megaspora	He 302	JQ279553	JQ279660	He and Dai (2012)
H. minor	He 933	JQ279555	JQ279654	He and Dai (2012)
H. minuscula	He 253	JQ279546	KU975516	He and Dai (2012)
H. murina	He 569	JQ716406	JQ716412	He et al. (2017)
H. muroiana	He 405	JQ279542	KU975517	Du et al. (2021)
H. nanospora	He 475	JQ279531	JQ279672	He and Dai (2012)
H. ochromarginata	He 47	JQ279579	JQ279666	He and Dai (2012)
H. orientalis	He 4601	KY425677	KY425685	He et al. (2017)
H. parmastoi	He 277	JQ780064	_	He et al. (2017)
H. paucisetigera	Cui 7845	JQ279560	JQ279644	He and Dai (2012)
H. quercicola	He 373	KU975474	KU975521	He et al. (2017)
H. rhabarbarina	He 280	JQ279574	KY425688	He and Dai 2012
H. rheicolor	Cui 8317	J0279529	_	Du et al. (2021)
H. rhododendricola	He 389	J0279577	J0279653	He and Dai (2012)
H. rubiainosa	He 1049	J0716407	J0279667	Yang et al. (2016)
H. rubiainosa	LWZ 20201017-32	ON063655	_	Wang et al. (2023a)
H. rufomarginata	He 1489	KU975477	KU975524	He et al. (2017)
H. separabilis	He 460	J0279572	J0279655	He and Dai (2012)
H. setipora	Cui 6301	J0279515	J0279639	Du et al. (2021)
H. sharmae	66088	MK588753	MK588836	Du et al. (2021)
H. sharmae	CAL 1535	KY929017	KY929018	Du et al. (2021)
H. sinensis	CLZhao 26040	OR659001	PP425893	Li et al. (2024)
H. spathulata	He 685	J0279591	KU975529	He et al. (2017)
H. sphaericola	He 303	J0279599	J0279684	Li et al. (2024)
H. sphaericola	LWZ 20190808-2b	ON063656	ON063855	Li et al. (2024)
H. sphaerospora	He 715	J0279594	KU975531	He et al. (2017)
H. subferruginea	Cui 8122	J0279521	_	Du et al. (2021)
H. subferruginea	He 1598	KU975481	_	Du et al. (2021)
H. tabacina	Dai 11635	JQ279563	JQ279647	He and Dai (2012)
H. tasmanica	He 449	JQ279582	JQ279663	He et al. (2017)
H. tenuis	He 779	JQ279538	JQ279641	Du et al. (2021)
H. tongbiguanensis	He 1552	KF908248	KU975532	He et al. (2017)
H. tropica	He 574	JQ279587	JQ279675	He et al. (2017)
H. ulmicola	He 864	J0780065	KU975534	He et al. (2017)
H. unicolor	He 468a	JQ279551	JQ279662	He et al. (2017)
H. verruculosa	Dai 17052	MF370594	MF370601	He et al. (2017)
H. villosa	He 537	JQ279528	JQ279634	He et al. (2017)
H. xerantica	Cui 9209	JQ279519	JQ279635	Du et al. (2021)
H. xerantica	LWZ 20190814-13b	ON063657	ON063856	Wang et al. (2023a)
H. bannaensis	CLZhao 35721 *	PQ847494	PQ847499	Present study
H. bannaensis	CLZhao 35884	PQ847495	PQ847500	Present study
H. yunnanensis	He 1447	KU975486	KU975538	He et al. (2017)
Hyphodontia arguta	KHL 11938 (GB)	EU118632	EU118633	Larsson (2007a)
H. arguta	LWZ 20180905-6	ON063672	ON063871	Wang et al. (2023a)
H. borbonica	FR-0219441	KR349240	NG_068856	Riebesehl et al. (2015)
H. pachyspora	LWZ20170908-5	MT319426	MT319160	Wang et al. (2023a)
H. pachyspora	LWZ20180905-6	MT319425	MT319159	Wang et al. (2021)
H. pallidula	He6087	OM100749	OM083983	Unpublished
H. pallidula	He6092	OM100750	OM083984	Unpublished
H. wongiae	LWZ20180414-16	MT319414	MT319146	Wang et al. (2023a)
H. wongiae	LWZ20180417-16	MT319415	MT319147	Wang et al. (2023a)
Lyomyces albopulverulentus	CLZhao 21478	OP730712	0P730724	Guan et al. (2023)
L. allantosporus	FR-0249548	KY800397	KY795963	Yurchenko et al. (2017)
L. allantosporus	KAS-GEL4933	KY800401	KY795965	Yurchenko et al. (2017)

0	0	GenBank accessions no.		Deferences	
Species name	Sample no.	ITS	nLSU	References	
L. asiaticus	CLZhao 35703	PQ847492	PQ847501	Present study	
L. asiaticus	CLZhao 35719 *	PQ847493	PQ847502	Present study	
L. bambusinus	CLZhao 4808	MN945970	_	Chen and Zhao (2020)	
L. bambusinus	CLZhao 4831	MN945968	MW264919	Chen and Zhao (2020)	
L. cremeus	CLZhao 4138	MN945974	MW264922	Chen and Zhao (2020)	
L. cremeus	CLZhao 8295	MN945972	_	Chen and Zhao (2020)	
L. crustosus	TASM:YG G39	MF382993	_	Gafforov et al. (2017)	
L. crustosus	UC2022841	KP814310	_	Guan et al. (2023)	
L. densiusculus	Ryvarden 44818	OK273853	OK273853	Viner et al. (2022)	
L. elaeidicola	LWZ20180411-19	MT319457	MT319190	Wang et al. (2021)	
L. elaeidicola	LWZ20180411-20	MT319458	NG_153910	Wang et al. (2021)	
L. erastii	23cSAMHYP	JX857800	_	Unpublished	
L. erastii	TASM:YG 022	MF382992	_	Gafforov et al. (2017)	
L. fimbriatus	Wu910620-7	MK575209	_	Yurchenko et al. (2020a)	
L. fimbriatus	Wu911204-4	MK575210	MK598740	Yurchenko et al. (2020a)	
L. fissuratus	CLZhao 4291	MW713738	MW713730	Luo et al. (2021b)	
L. fissuratus	CLZhao 4352	MW713742	MW713732	Luo et al. (2021b)	
L. fumosus	CLZhao 8188	MW713744	MW713736	Luo et al. (2021b)	
L. gatesiae	LWZ20180515-3	MT319447	MT319181	Wang et al. (2021)	
L. gatesiae	LWZ20180515-32	MT319448	MT319182	Wang et al. (2021)	
L. griseliniae	KHL 12971 (GB)	DQ873651	DQ873651	Larsson et al. (2006)	
L. hengduanensis	CLZhao 20627	OR793233	PP657611	Yuan et al. (2024)	
L. hengduanensis	CLZhao 25551	OR658999	PP657610	Yuan et al. (2024)	
L. incanus	CLZhao 22813	OR094480	OR449935	Dong et al. (2024)	
L. incanus	CLZhao 22900 *	OR094481	OR449936	Dong et al. (2024)	
L. juniper	FR-0261086	KY081799	_	Riebesehl and Langer (2017)	
L. macrosporus	CLZhao 4516	MN945977	MW264920	Chen and Zhao (2020)	
L. mascarensis	KAS-GEL4833	KY800399	KY795964	Yurchenko et al. (2020a)	
L. mascarensis	KAS-GEL4908	KY800400	_	Yurchenko et al. (2020a)	
L. microfasciculatus	CLZhao 5109	MN954311	MW264921	Chen and Zhao (2020)	
L. niveomarginatus	CLZhao 16360	PP537949	PP657607	Yuan et al. (2024)	
L. niveus	CLZhao 6431	MZ262541	MZ262526	Luo et al. (2021b)	
L. niveus	CLZhao 6442	MZ262542	MZ262527	Luo et al. (2021b)	
L. ochraceoalbus	CLZhao 4385	MZ262535	MZ262521	Luo et al. (2021b)	
L. ochraceoalbus	CLZhao 4725	MZ262536	MZ262522	Luo et al. (2021b)	
L. orientalis	GEL3376	DQ340325	DQ340351	Yurchenko et al. (2017)	
L. pruni	GEL2327	DQ340312	DQ340349	Larsson et al. (2006)	
L. pruni	Ryberg 021018 (GB)	DQ873624	_	Larsson et al. (2006)	
L. sambuci	83SAMHYP	JX857721	-	Yurchenko et al. (2017)	
L. sambuci	KAS-JR7	KY800402	KY795966	Yurchenko et al. (2017)	
L. vietnamensis	He 3260	MW507086	MW507028	Yurchenko et al. (2017)	
L. wuliangshanensis	He 3498	MW507087	MW507029	Chen and Zhao (2020)	
L. wuliangshanensis	He 4765	MW507090	MW507032	Chen and Zhao (2020)	
L. wumengshanensis	CLZhao 29374	OR803021	PP657613	Yuan et al. (2024)	
L. wumengshanensis	CLZhao 32800	OR899211	PP657614	Yuan et al. (2024)	
L. yunnanensis	CLZhao 2463	OP730711	OP730723	Guan et al. (2023)	
L. yunnanensis	CLZhao 9375	OP730710	_	Guan et al. (2023)	
L. zhaotongensis	CLZhao 32878	PP537950	PP657609	Yuan et al. (2024)	
Nigrofomes melanoporus	JV 1704/39	MF629835	MF629831	Wang et al. (2023a)	
N. sinomelanoporus	Cui 5277	MF629836	MF629832	Wang et al. (2023a)	
Peniophorella albohymenia	CLZhao 33187 *	PQ811412	PQ847496	Present study	
P. albohymenia	CLZhao 33257	PQ811413	-	Present study	
P. aspersa	TNM F24809	MN062097	MN062142	Yurchenko et al. (2020b)	
P. aspersa	TNM F32708	MN062099	MN062144	Yurchenko et al. (2020b)	
P. cremea	CLZhao 1606	MT955162	_	Xu et al. (2020)	

		GenBank ac	cessions no.		
Species name	Sample no.	ITS	nLSU	References	
P. cremea	CLZhao 1719	MT955163	_	Xu et al. (2020)	
P. crystallifera	LWZ 20210626-4a	ON063685	ON063885	Wang et al. (2023a)	
P. crystallifera	TNM F30331	MN062100	MN062147	Yurchenko et al. (2020b)	
P. daweishanensis	CLZhao 18600 *	OR094501	OR449932	Dong et al. (2024)	
P. echinocystis	KHL 6284	DQ677494	DQ681200	Larsson (2007b)	
P. fissurata	CLZhao 5848	MN864262	OM985777	Guan et al. (2020)	
P. fissurata	CLZhao 9421	MN864260	OM985776	Guan et al. (2020)	
P. guttulifera	CBS 107303	LT603016	LT603001	Kolařík and Vohník (2018)	
P. guttulifera	NH 12012 (GB)	DQ647501	_	Hallenberg et al. (2007)	
P. odontiiformis	TMI 21347	DQ647496	_	Hallenberg et al. (2007)	
P. odontiiformis	TMI 6824	DQ647500	_	Hallenberg et al. (2007)	
P. olivacea	CLZhao 25896 *	OR094502	OR449933	Dong et al. (2024)	
P. pallida	UC 2022844	KP814208	_	Rosenthal et al (2017)	
P. pallida	UC 2022887	KP814201	_	Rosenthal et al (2017)	
P. pertenuis	NH 12429 (GB)	DQ647486	_	Hallenberg et al. (2007)	
P. pertenuis	NH 15115 (GB)	DQ647487	_	Hallenberg et al. (2007)	
P. praetermissa	NH 10986 (GB)	DQ647462	_	Hallenberg et al. (2007)	
P. praetermissa	NH 11192 (GB)	DQ647461	_	Hallenberg et al. (2007)	
P. pubera	CBS:464.86	MH861988	MH873680	Vu et al (2019)	
P. pubera	LWZ 20210624-16b	ON063687	ON063887	Wang et al. (2023a)	
P. punctata	CLZhao 33720	PQ811414	PQ847497	Present study	
P. punctata	CLZhao 33732 *	PQ811415	PQ847498	Present study	
P. reticulate	CLZhao 17066	OM985746	OM985783	Dong et al. (2024)	
P. reticulate	TNM F22559	MN062103	MN062151	Yurchenko et al. (2020b)	
P. rude	LWZ 20171026-7	ON063688	ON063888	Wang et al. (2023a)	
P. subpraetermissa	LWZ 20190816-3b	ON063689	ON063889	Wang et al. (2023a)	
P. subpraetermissa	Wu 950627	DQ647493	_	Hallenberg et al. (2007)	
P. yunnanensis	CLZhao 4810	MN864263	OM985788	Guan et al. (2020)	
P. yunnanensis	CLZhao 6137	MN864266	_	Guan et al. (2020)	
Phylloporia oreophila	LWZ 20190811-27a	ON063665	ON063865	Wang et al. (2023a)	
P. radiate	LWZ 20141122-6	ON063666	ON063866	Wang et al. (2023a)	
Porodaedalea himalayensis	LWZ 20180903-21	ON063667	ON063867	Wang et al. (2023a)	
P. laricis	LWZ 20190724-9	ON063668	ON063868	Wang et al. (2023a)	
Sanghuangporus guercicola	LWZ 20170821-18	ON063669	ON063869	Wang et al. (2023a)	
S. weigelae	LWZ 20210623-2a	ON063671	ON063870	Wang et al. (2023a)	
Skvortzovia dabieshanensis	LWZ 20201017-55	MW414514	MW414460	Wang et al. (2023a)	
S. dabieshanensis	LWZ 20210918-15b	ON063694	ON063894	Wang et al. (2023a)	
S. furfurella	KHL 10180	DQ873649	DQ873649	Yu et al. (2021)	
S. incana	CLZhao 16338 *	OR096179	OR449950	Dong et al. (2024)	
S. yunnanensis	CLZhao 16084	MW472754	MW473473	Wang et al. (2023a)	
S. yunnanensis	CLZhao 16181	MW472755	MW473474	Dong et al. (2021)	
Thelephora ganbajun	ZRL20151295	LT716082	KY418908	Liu et al. (2022)	
Tubulicrinis glebulosus	LWZ 20180903-13	ON063705	_	Wang et al. (2023a)	
T. pini	CLZhao 3679	-	OR449951	Dong et al. (2024)	
T. pini	CLZhao 6881 *	OR096210	OR449952	Dong et al. (2024)	
T. yunnanensis	CLZhao 3418	MT153879	MT153886	He et al. (2020)	
T. yunnanensis	CLZhao 9717	MT153880	MT153887	He et al. (2020)	
Xylodon olivaceobubalinus	CLZhao 25164	OR167771	OR449947	Dong et al. (2024)	
X. olivaceobubalinus	CLZhao 25174 *	OR167772	OR449948	Dong et al. (2024)	

was computed from the remaining trees. Branches were considered as significantly supported if they received a maximum likelihood bootstrap support value (BS) of \geq 70%, a Maximum Parsimony bootstrap support value (BT) of \geq 70% or a Bayesian posterior probability (BPP) of \geq 0.95.

Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species

Figure 1. Maximum Parsimony strict consensus tree illustrating the phylogeny of the order Hymenochaetales based on ITS+nLSU sequences. Branches are labeled with Maximum Likelihood bootstrap values \geq 70%, parsimony bootstrap values \geq 50% and Bayesian posterior probabilities \geq 0.95, respectively.

Results

Molecular phylogeny

The ITS+nLSU dataset (Fig. 1) comprised sequences from 102 fungal specimens representing 63 taxa. The dataset had an aligned length of 2,441 characters, of which 1,233 characters were constant, 204 were variable and parsimony-un-informative and 1,004 (50%) were parsimony-informative. Maximum Parsimony analysis yielded 3 equally parsimonious trees (TL = 7,192, CI = 0.3420, HI = 0.6803, RI = 0.7080 and RC = 0.2263). The best model of nucleotide evolution for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was found to be GTR+I+G. Bayesian analysis and ML analysis resulted in a

similar topology as in the MP analysis. The Bayesian analysis had an average standard deviation of split frequencies = 0.008504 (BI). The phylogram based on the ITS+nLSU rDNA gene regions (Fig. 1) included six families within the Hymenochaetales, which were Hymenochaetaceae, Hyphodontiaceae, Peniophorellaceae, Schizoporaceae, Skvortzoviaceae and Tubulicrinaceae, in which the new species *Hymenochaete bannaensis* was nested in Hymenochaetaceae; two taxa *Peniophorella albohymenia* and *P. punctata* were nested in Peniophorellaceae; the species *Lyomyces asiaticus* was grouped in Schizoporaceae.

The ITS+nLSU dataset (Fig. 2) comprised sequences from 80 fungal specimens representing 71 taxa. The dataset had an aligned length of 2,285 characters, of which 1,479 characters were constant, 199 were variable and parsimony-uninformative and 607 (50%) were parsimony-informative. Maximum Parsimony analysis yielded 3 equally parsimonious trees (TL = 3,749, CI = 0.3420, HI = 0.6580, RI = 0.5462 and RC = 0.1868).

Figure 2. Maximum Parsimony strict consensus tree illustrating the phylogeny of the two new species and related species in *Hymenochaete*, based on ITS+nLSU sequences. Branches are labeled with Maximum Likelihood bootstrap values \geq 70%, parsimony bootstrap values \geq 50% and Bayesian posterior probabilities \geq 0.95, respectively.

Figure 3. Maximum Parsimony strict consensus tree illustrating the phylogeny of the two new species and related species in *Lyomyces*, based on ITS+nLSU sequences. Branches are labeled with Maximum Likelihood bootstrap values \ge 70%, parsimony bootstrap values \ge 50% and Bayesian posterior probabilities \ge 0.95, respectively.

Figure 4. Maximum Parsimony strict consensus tree illustrating the phylogeny of the two new species and related species in *Peniophorella*, based on ITS+nLSU sequences. Branches are labeled with Maximum Likelihood bootstrap values \ge 70%, parsimony bootstrap values \ge 50% and Bayesian posterior probabilities \ge 0.95, respectively.

The best model of nucleotide evolution for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was found to be GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology as in the MP analysis. The Bayesian analysis had an average standard deviation of split frequencies = 0.001385 (BI) and the effective sample size (ESS) across the two runs is double the average ESS (avg. ESS) = 365. The phylogram based on the ITS+nLSU rDNA gene regions (Fig. 1) highlighted that the new species *Hymenochaete bannaensis* was sister to *H. muroiana* I. Hino & Katum. with strong supports values (100/100/1.00), and then was closely nested with *H. colliculosa* (Sacc.) Parmasto, *H. globispora* G.A. Escobar and *H. megaspora* S.H. He & Hai J. Li. The ITS+nLSU dataset (Fig. 3) comprised sequences from 51 fungal specimens representing 32 taxa. The dataset had an aligned length of 2,066 characters, of which 1,366 characters were constant, 177 were variable and parsimony-uninformative and 523 (50%) were parsimony-informative. Maximum Parsimony analysis yielded 3 equally parsimonious trees (TL = 2,358, CI = 0.4440, HI = 0.5560, RI = 0.6763 and RC = 0.3003). The best model of nucleotide evolution for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was found to be GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology as in the MP analysis. The Bayesian analysis had an average standard deviation of split frequencies = 0.006833 (BI) and the effective sample size (ESS) across the two runs is double the average ESS (avg. ESS) = 306. The phylogram based on the ITS+nLSU rDNA gene regions (Fig. 3) indicated that the new species *Lyomyces asiaticus* was clustered with *L. crustosus* (Pers.) P. Karst., *L. ochraceoalbus* C.L. Zhao, *L. hengduanensis* Q. Yuan & C.L. Zhao and *L. zhaotongensis* Q. Yuan & C.L. Zhao.

The ITS+nLSU dataset (Fig. 4) comprised sequences from 36 fungal specimens representing 212 taxa. The dataset had an aligned length of 2,016 characters, of which 1,497 characters were constant, 72 were variable and parsimony-uninformative and 447 (50%) were parsimony-informative. Maximum Parsimony analysis yielded 3 equally parsimonious trees (TL = 1,235, CI = 0.6024, HI = 0.3976, RI = 0.7813 and RC = 0.4707). The best model of nucleotide evolution for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was found to be TIM3+I+G. Bayesian analysis and ML analysis resulted in a similar topology as in the MP analysis. The Bayesian analysis had an average standard deviation of split frequencies = 0.009797 (BI) and the effective sample size (ESS) across the two runs is double the average ESS (avg. ESS) = 563. The phylogram based on the ITS+nLSU rDNA gene regions (Fig. 3) revealed that the new species Peniophorella albohymenia was grouped with two taxa as P. olivacea J.H. Dong & C.L. Zhao and P. subpraetermissa (Sheng H. Wu) K.H. Larss. Furthermore, the species P. punctata Y.L. Deng & C.L. Zhao was the sister to P. fissurata C.L. Zhao with strong supports values (100/100/1.00).

Taxonomy

Hymenochaete bannaensis Y.L. Deng & C.L. Zhao, sp. nov. MycoBank No: 857317

Figs 5, 6, 7

Holotype. CHINA • Yunnan Province, Xishuangbanna, Wild elephant Valley, GPS coordinates: 22°17'N, 100°85'E, altitude 900 m asl., on the dead bamboo, leg. C.L. Zhao, 25 January 2024, CLZhao 35721 (SWFC).

Etymology. Bannaensis (Lat.): referring to the locality (banna) of the type specimen.

Diagnosis. *Hymenochaete bannaensis* is characterized by the flocculent basidiomata with cinnamon to yellowish brown to rust-brown hymenial surface, generative hyphae with simple septa and broadly ellipsoid to globose basidiospores.

Description. *Basidiomata* annual, resupinate, closely adnate, flocculent, without odor or taste when fresh, up to 7 cm long, 3.5 cm wide, and 200 µm thick. *Hymenial surface* smooth, cinnamon to yellowish brown when fresh, yellowish brown to rust-brown upon drying. Sterile margin yellowish brown, thinning out, up to 2 mm.

Figure 5. Basidiomata of Hymenochaete bannaensis (holotype, CLZhao 35721). Scale bars: 1 cm (A); 1 mm (B).

Hyphal system monomitic; generative hyphae with simple-septa, brown, thick-walled, smooth, moderately branched, $2.4-2.9 \mu m$ in diameter, IKI-, CB-, tissues darkening in KOH; subhymenial hyphae densely covered by crystals.

Cystidia and **cystidioles** absent. **Basidia** subcylindrical, colorless, thinwalled, with four sterigmata and a basal simple septum, $18.5-23 \times 3.5-4 \mu m$; basidioles numerous, in shape similar to basidia but smaller. **Setae** abundant, distinctly thick-walled, subulate, with an acute tip, yellowish to reddish brown, $67-94 \times 7-11 \mu m$, projecting out of the hymenium up to $33-44.5 \mu m$.

Basidiospores broadly ellipsoid to globose, colorless, thin-walled, smooth, always filled with oil drop, CB-, $(3.6-)3.7-4(-4.1) \times (3.4-)3.5-3.9(-4) \mu m$, L = 3.87 μm , W = 3.67 μm , Q = 1.05-1.06 (n = 60/2).

Another specimen (paratype) examined. CHINA • Yunnan Province, Xishuangbanna, Wild elephant Valley, GPS coordinates: 22°17'N, 100°85'E, altitude

Figure 6. Microscopic structures of *Hymenochaete bannaensis* (holotype, CLZhao 35721) **A** basidiospores **B** basidia and basidioles **C** setae **D** a section of hymenium. Scale bars: 5 μm (**A**); 10 μm (**B**–**D**).

Figure 7. Sections of hymenium of *Hymenochaete bannaensis* (holotype, CLZhao 35721). Scale bars: 10 µm (A–C).

900 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 25 January 2024, CLZhao 35884 (SWFC).

Notes. Phylogenetically, *Hymenochaete bannaensis* is nested as sister to H. muroiana with strong supports (100/100/1.00) based on ITS+nLSU sequences (Figs 1, 2). Morphologically, H. muroiana is different from H. bannaensis by the brun suie basidiomata, smaller ellipsoid to subcylindrical basidia (8–10 × 3 μ m) and narrower ovoid to ellipsoid basidiospores (3.5–4 × 2-2.6 µm; Léger 1998). Hymenochaete acerosa S.H. He & Hai J. Li, H. cystidiata Parmasto and H. sinensis Y.C. Li & C.L. Zhao, are similar to H. bannaensis by thick-walled and acute setae. However, H. acerosa is distinguished from H. bannaensis by its effused and detachable basidiomata, longer setae (85- $170 \times 5-8 \mu$ m), wider clavate basidia ($13-21 \times 5-8 \mu$ m) and larger basidiospores (7-8.5 × 4.8-6 µm; He and Liu 2011). Furthermore, H. cystidiata differs from *H. bannaensis* by its longer setae ($60-100 \times 7-10 \mu m$), and subcylindrical basidiospores (4.8-5.8 × 2.5-3.2 µm; Parmasto 2012). Moreover, H. sinensis differs from H. bannaensis by having ceraceous basidiomata, coconut brown to brownish black hymenial surface, shorter barrel-shaped basidia $(10-12 \times 3.1-3.8 \mu m)$ and longer ellipsoid to broadly ellipsoid basidiospores $(4-5 \times 2.5-3.5 \mu m; Li et al. 2024)$.

Lyomyces asiaticus Y.L. Deng & C.L. Zhao, sp. nov.

MycoBank No: 857318 Figs 8, 9, 10

Holotype. CHINA • Yunnan Province, Xishuangbanna, Wild elephant Valley, GPS coordinates: 22°17'N, 100°85'E, altitude 900 m asl., on the dead bamboo, leg. C.L. Zhao, 25 January 2024, CLZhao 35719 (SWFC).

Etymology. Asiaticus (Lat.): referring to the continent (Asia) where the species was found.

Diagnosis. *Lyomyces asiaticus* is characterized by the membranaceous basidiomata with cream to pale-yellow hymenial surface with tuberculate, a monomitic hyphal system with clamped generative hyphae, and ellipsoid basidiospores $4.6-6.4 \times 3-3.9 \mu m$.

Description. *Basidiomata* annual, resupinate, closely adnate, membranaceous, without odor or taste when fresh, up to 5 cm long, 1.5 cm wide, and 100 µm thick. *Hymenial surface* tuberculate, thin, white to cream when fresh, cream upon drying. Sterile margin white to cream, thinning out, up to 2 mm.

Hyphal system monomitic; generative hyphae with clamp connections, colorless, thin-walled, smooth, moderately branched, with some crystals, $2-2.5 \mu m$ in diameter, IKI–, CB–, tissues unchanged in KOH; subhymenial hyphae densely covered by crystals.

Hymenium three kinds of cystidia: (1) tapering, colorless, thin-walled, smooth, filled with refractive oil-like matter, $19.5-27 \times 1.8-2.3 \mu m$; (2) bottled, colorless, thin-walled, smooth, filled with refractive oil-like matter, $19.3-24.7 \times 4.6-5.4 \mu m$; (3) halocystidia, colorless, thin-walled, smooth, filled with refractive oil-like matter, $17-19 \times 5.5-7 \mu m$. **Basidia** cylindrical, with a basal clamp connection and four sterigmata, filled with refractive oil-like matter, $17-21 \times 3-7 \mu m$; basidioles numerous, in shape similar to basidia but smaller.

Figure 8. Basidiomata of Lyomyces asiaticus (holotype, CLZhao 35719). Scale bars: 1 cm (A); 1 mm (B)

Basidiospores ellipsoid, colorless, thin-walled, smooth, always filled with oil drop, CB-, $(4.2-)4.6-6.4(-6.5) \times (2.4-)3-3.9(-4) \mu$ m, L = 5.63 µm, W = 3.36 µm, Q = 1.62-1.73 (n = 60/2).

Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species

Figure 10. Sections of hymenium of Lyomyces asiaticus (holotype, CLZhao 35719). Scale bars: 10 µm (A-C).

Another specimen (paratype) examined. CHINA • Yunnan Province, Xishuangbanna, Wild elephant Valley, GPS coordinates: 22°17'N, 100°85'E, altitude 900 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 25 January 2024, CLZhao 35703 (SWFC).

Notes. The phylogenetic tree of ITS+nLSU (Fig. 3) showed that the new species *Lyomyces asiaticus* was clustered with *L. crustosus* and *L. ochraceoalbus*.

However, morphologically, L. crustosus can be delimited from L. asiaticus by having effused basidiocarp, clavate basidia (26 × 4.5 µm) and longer ellipsoidal to subcylindrical basidiospores (5-7.5 × 2.5-3 µm; Karsten 1881). L. ochraceoalbus differs from L. asiaticus in its smooth hymenial surface, lacking a cystidium and shorter clavate basidia ($11-16.5 \times 3.5-5 \mu m$; Luo et al. 2021b). Morphologically, Lyomyces asiaticus reminds L. albopulverulentus C.L. Zhao, L. cremeus, L. denudatus Viner, L. macrosporus C.L. Zhao and L. wuliangshanensis C.L. Zhao by having the ellipsoid basidiospores. However, L. albopulverulentus can be separated from L. asiaticus by its pruinose hymenial surface and larger basidia (24.5–28.5 \times 7–9 μ m) and larger basidiospores (8–10.5 × 5.5-7 µm; Guan et al. 2023). L. cremeus is distinct from L. asiaticus by its smooth hymenial surface, present two types cystidia as capitate (20-40 × $3-5 \mu m$) and tapering ($18-35 \times 3-4.5 \mu m$) and thin-walled to slightly thickwalled basidiospores (Chen and Zhao 2020). In addition, L. denudatus is separated from L. asiaticus by the smooth hymenial surface, longer capitate cystidia $(34.9-62 \times 4-5.5 \mu m)$ and suburniform basidia $(15-21.1 \times 3.8-5.5 \mu m)$; Viner and Miettinen 2022). The species L. macrosporus differs from L. asiaticus due to its reticulate hymenial surface and longer basidia $(22.2-38 \times 4.5-7 \mu m)$ and larger basidiospores (6.7–8.9 × 4.4–5.4 µm; Chen and Zhao 2020). Moreover, L. wuliangshanensis can be delimited from L. asiaticus by its smooth to more or less tuberculate hymenial surface and two kinds of cystidia as capitate (22-37 \times 3–6 µm) and tapering (21–35 \times 4–6.5 µm; Chen and Zhao 2020).

Peniophorella albohymenia Y.L. Deng & C.L. Zhao, sp. nov.

MycoBank No: 857319 Figs 11, 12, 13

Holotype. CHINA • Yunnan Province, Zhaotong, Xiaocaoba Town, Wumengshan National Nature Reserve, GPS coordinates: 27°33'N, 103°27'E, altitude 2300 m asl., on fallen angiosperm branch, leg. C.L. Zhao, 19 September 2023, CLZhao 33187 (SWFC).

Etymology. *Albohymenia* (Lat.): referring to "albus", the distinctive white hymenium of the type specimen when fresh.

Diagnosis. Peniophorella albohymenia is characterized by the membranaceous basidiomata with white hymenial surface, four types cystidia as stephanocyst, fusiform, cylindrical and capitate, and ellipsoid basidiospores measuring $9-10.9 \times 4.5-5 \mu m$.

Description. *Basidiomata* annual, resupinate, adnate, membranaceous, without odor or taste when fresh, up to 4.5 cm long, 1 cm wide, and 0.1 mm thick. *Hymenial surface* smooth, white when fresh and dry. Sterile margin distinctly, thin, white, up to 1 mm long.

Hyphal system monomitic; generative hyphae with clamp connections, thin-walled, colorless, occasionally branched, 2.5–4 μ m in diameter, IKI–, CB–, tissues unchanged in KOH.

Cystidia of four types: (1) stephanocyst, thin-walled, $9-18 \times 7-8 \mu m$; (2) fusiform cystidia, smooth, thin-walled, $29-31 \times 7-9 \mu m$; (3) cylindrical cystidia, thin-walled, slightly constricted at the neck, the apical part encrusted with asteroid, $27-64 \times 5-11 \mu m$; (4) capitate cystidia, thin-walled, the apical part

Figure 11. Basidiomata of *Peniophorella albohymenia* (holotype, CLZhao 33187) **A** basidiomata on the substrate **B** character hymenophore Scale bars: 1 cm (**A**); 1 mm (**B**).

Figure 12. Microscopic structures of *Peniophorella albohymenia* (holotype, CLZhao 33187) A basidiospores B basidia and basidioles C stephanocyst D fusiform cystidia E cylindrical cystidia F capitate cystidia G a section of the hymenium. Scale bars: $10 \ \mu m (A-G)$.

encrusted with asteroid, $22-47 \times 5-12 \ \mu\text{m}$. **Basidia** clavate, with four sterigmata and a basal clamp connection, colorless, thin-walled, $20-28 \times 7.5-9 \ \mu\text{m}$; basidioles in shape similar to basidia, but slightly smaller.

Basidiospores ellipsoid, colorless, thin-walled, IKI–, CB–, $(8.5-)9-10.9(-11.2) \times (4.4-)4.5-5(-5.5) \ \mu\text{m}$, L = 9.87 μ m, W = 4.93 μ m, Q = 1.99-2.02 (n = 60/2).

Another specimen (paratype) examined. CHINA • Yunnan Province, Zhaotong, Xiaocaoba Town, Wumengshan National Nature Reserve, GPS coordinates: 27°33'N, 103°27'E, altitude 2300 m asl., on fallen angiosperm branch, leg. C.L. Zhao, 19 September 2023, CLZhao 33257 (SWFC).

Notes. Our results indicate that the new species *P. albohymenia* was placed within *Peniophorella* inferring from the dataset of ITS+nLSU (Figs 1, 4). Morphologically, the species *P. albohymenia* is similar to *P. daweishanensis* J.H. Dong & C.L. Zhao and *P. yunnanensis* C.L. Zhao by having capitate cystidia, but *P. daweishanensis* is distinct from *P. albohymenia* by its buff to slightly yellowish, reticulate hymenial surface and longer basidia (31.5–38 × 7–9 µm; Dong et al. 2024). *P. yunnanensis* differs from *P. albohymenia* due to its grandinioid hymenial surface (Guan et al. 2020).

Figure 13. Sections of hymenium of Peniophorella albohymenia (holotype, CLZhao 33187). Scale bars: 10 µm (A-F).

Peniophorella punctata Y.L. Deng & C.L. Zhao, sp. nov.

MycoBank No: 857320 Figs 14, 15, 16

Holotype. CHINA • Yunnan Province, Zhaotong, Xiaocaoba Town, Wumengshan National Nature Reserve, GPS coordinates: 27°33'N, 103°27'E, altitude 2300 m asl., on fallen angiosperm branch, leg. C.L. Zhao, 21 September 2023, CLZhao 33732 (SWFC).

Etymology. *Punctata* (Lat.): referring to the punctate basidioma of the type specimen.

Diagnosis. *Peniophorella punctata* is characterized by the membranaceous, punctate basidiomata with white to pale yellow hymenial surface, fusiform cystidia, and allantoid basidiospores measuring $9.5-12.5 \times 4-4.8 \mu m$.

Description. *Basidiomata* annual, resupinate, adnate, membranaceous, punctate, without odor or taste when fresh, up to 4 cm long, 3 cm wide, and 0.1 mm thick. *Hymenial surface* smooth, white to pale yellow when fresh, turning to aurantiacus to avellaneus upon drying. Sterile margin distinctly, thin, white, up to 2 mm long.

Hyphal system monomitic, generative hyphae with clamp connections, thinwalled, colorless, occasionally branched, $2.9-4.6 \mu m$ in diameter, IKI-, CB-, tissues unchanged in KOH.

Figure 14. Basidiomata of *Peniophorella punctata* (holotype, CLZhao 33732) A basidiomata on the substrate B character hymenophore. Scale bars: 1 cm (A); 1 mm (B).

Cystidia fusiform, slightly constricted at the neck and forms a long beak, thinwalled, $31-57 \times 9-13.5 \mu m$. **Basidia** clavate, slightly constricted in the middle, with four sterigmata and a basal clamp connection, colorless, thin-walled, 26.3– $39.8 \times 8.1-9.5 \mu m$; basidioles in shape similar to basidia, but slightly smaller.

Figure 15. Microscopic structures of *Peniophorella punctata* (holotype, CLZhao 33732) **A** basidiospores **B** basidia and basidioles **C** fusiform cystidia **D** a section of the hymenium. Scale bars: $10 \mu m (A-D)$.

Basidiospores cylindrical to allantoid, colorless, thin-walled, IKI–, CB–, $(9.1-)9.5-12.5(-12.9) \times (3.7-)3.9-4.8(-5.5) \mu$ m, L = 10.89 µm, W = 4.30 µm, Q = 2.53-2.54 (n = 60/2).

Another specimen (paratype) examined. CHINA • Yunnan Province, Zhaotong, Xiaocaoba Town, Wumengshan National Nature Reserve, GPS coordinates: 27°33'N, 103°27'E, altitude 2300 m asl., on fallen angiosperm branch, leg. C.L. Zhao, 21 September 2023, CLZhao 33720 (SWFC).

Notes. The phylogenetic analysis indicates that species *P. punctata* was placed within *Peniophorella* inferring from the dataset of ITS+nLSU. Morphologically, *P. allantospora* (Sheng H. Wu) K.H. Larss., *P. capitulata* (Boidin & Gilles) K.H. Larss., *P. flagellata* (G. Cunn.) K.H. Larss., *P. pallida* (Bres.) K.H. Larss. and

Figure 16. Sections of hymenium of *Peniophorella punctata* (holotype, CLZhao 33732). Scale bars: 10 µm (A-C).

P. praetermissa (P. Karst.) K.H. Larss. are similar to *P. punctata* based on the smooth hymenophore and allantoid basidiospores. However, *P. allantospora* differs from *P. punctata* by its shorter subutriformia to subclavata basidia (17–27 × 7.0–8.5 µm; Larsson 2007b). *P. capitulata* in its presence of subcylindrica leptocystidia (25–50×4–7 µm; Larsson 2007b). *P. flagellata* is distinct from *P. punctata* by its cream hymenial surface, obovate or subglobose stephanocysts, narrower basidia (28–40 × 7–8 µm) and shorter basidiospores (8–9 × 5–6 µm; Larsson 2007b). *P. pallida* can be delimited from *P. punctata* by its whitish to ochraceous hymenial surface and longer fusiform cystidia (50–70 × 6–8 µm) and smaller basidia (20–25 × 5–6 µm; Larsson 2007b). *P. praetermissa* can be separated from *P. punctata* by presence of three types of cystidia as fusiform gloeocystidia (50–100 × 8–12 µm), cylindrical leptocystidia (20–30 × 6–7 µm; Larsson 2007b).

Discussion

Many recently described wood-inhabiting fungal taxa have been reported worldwide, including in the genera *Hymenochaete, Lyomyces* and *Peniophorella* (Chen et al. 2017; Kan et al. 2017a, b; Pacheco et al. 2018; Miettinen et al. 2019; Viner and Miettinen 2022; Dong et al. 2024). The Xishuangbanna and Zhaotong are situated in the southwest of China; these areas become focal points for fungal diversity in China due to their complex topography and diverse ecosystems. In our study, four new species were found from Xishuangbanna and Zhaotong, Yunnan Province, China.

The family Hymenochaetaceae is characterized by annual to perennial, brownish basidiomata with a xanthochroic reaction in KOH, poroid or corticioid hymenophore, generative hyphae without clamp connections and setal elements present or absent (Wu et al. 2022a, b). Some forest pathogens species are mainly located in the genus Coniferiporia L.W. Zhou & Y.C. Dai, Onnia P. Karst. and Pyrrhoderma Imazeki (Zhou et al. 2016; Ji et al. 2017). Furthermore, Inonotus obliquus (Fr.) Pilát and Sanghuangporus sanghuang (Sheng H. Wu, T. Hatt. & Y.C. Dai) Sheng H. Wu, L.W. Zhou & Y.C. Dai have therapeutic properties (Wu et al. 2019b; Lv et al. 2023; Zhang et al. 2023a; Ma et al. 2024). Hymenochaetaceae is typed with the genus Hymenochaete Lév., which was erected in 1846 and typified by H. rubiginosa (Dicks.) Lév. The genus Hymenochaete can be identified by the annual to perennial, resupinate, effused-reflexed to pileate basidiomata with smooth, lamellate, tuberculate, poroid or hydnoid hymenophore, hyphal system monomitic or dimitic, presence of setae, and colorless, thin-walled, narrowly cylindrical to globose basidiospores (Léger 1998; Parmasto 2001; He and Dai 2012). There are some characteristics that can be used to circumscribe the genus, such as brown basidiomata darkening in potassium hydroxide, simple-septate generative hyphae, brown setae, and causing a white rot (Léger 1998; Parmasto 2001). In the present study, the new species H. bannaensis is distinguished by flocculent basidiomata with cinnamon to yellowish brown to rust-brown hymenial surface, generative hyphae with simple septa and broadly ellipsoid to globose basidiospores. Phylogenetically, H. bannaensis was close to H. colliculosa, H. globispora, and H. megaspora. However, morphologically, H. colliculosa is distinguished from H. bannaensis by its brown hymenial surface with tuberculate and larger ellipsoid basidiospores measuring 6-7.5 × 4-4.5 µm (Léger 1998). Furthermore, H. globispora differs from H. bannaensis by its deep reddish-brown hymenial surface with

granular, longer setae (150 µm) with crystal, wider basidia (15–18 × 4.5–5.5 µm) and globular basidiospores (4 × 5.5 µm; Léger 1990). Moreover, *H. megaspora* is distinct from *H. bannaensis* by having effused or effused-reflexed with slightly elevated margins basidiomata (150–600 µm thick), grayish brown to dark gray, silky, tomentose, concentrically sulcate and zonate pileal surface, smooth or tuberculate hymenophore with pale mouse-gray to vinaceous gray, longer setae (90–120 × 8–13 µm), larger clavate basidia (25–32 × 5–8 µm) and larger, broadly ellipsoid basidiospores measuring 7.5–10 × 5–7 µm (He and Liu 2011).

The genus Lyomyces P. Karst. (Schizoporaceae) was established by Karsten (1881) with L. sambuci (Pers.) P. Karst. as the type species. It is characterized by the resupinate-to-effused basidiomata with a smooth to odontioid hymenophore, a monomitic hyphal system with generative hyphae bearing clamp connections, the presence of several types of cystidia and with smooth, thin- to slightly thick-walled basidiospores (Karsten 1881; Bernicchia and Gorjón 2010). Previously, 77 specific and infraspecific names were registered in the Index Fungorum (http://www.indexfungorum.org; accessed on 24 March 2025), of which approximately 65 species of Lyomyces are currently accepted (Cunningham 1963; Dai 2011; Gafforov et al. 2017; Luo et al. 2021a; Yuan et al. 2024; Dai et al. 2025). In this study, the new species Lyomyces asiaticus is characterized by the membranaceous basidiomata with white to cream hymenial surface with tuberculate, a monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores. The phylogenetic tree of ITS+nLSU (Figs 1, 3) showed that L. asiaticus was grouped closely with L. hengduanensis and L. zhaotongensis. However, morphologically, L. hengduanensis is distinct from L. asiaticus by having pruinose hymenial surface, fusoid cystidia (17.5-25 × 3-4 µm) and subclavate cystidia (16-23 × 3-4.5 µm), and smaller clavate basidia (10.5-14 × 3.5-5 µm; Yuan et al. 2024). L. zhaotongensis is distinguishable from L. asiaticus by its farinaceous basidiomata, fusoid cystidia (16-20.5 × 2.5–3.5 µm), smaller clavate basidia (14–16.5 × 2.5–3.5 µm) and smaller broadly ellipsoid basidiospores measuring $2.6-3.5 \times 2.5-3 \mu m$ (Yuan et al. 2024).

The family Peniophorellaceae L.W. Zhou et al. was established by Wang et al. (2023a), to include the genus Peniophorella P. Karst, typed with P. pubera (Fr.) P. Karst. Species of the family are characterized by annual, resupinate, effused, adnate, thin, ceraceous basidiomata with smooth to tuberculate, white to yellowish hymenophore, a monomitic hyphal system with clamped generative hyphae thin-walled, and colorless, the presence of different kinds of cystidia, metuloids, gloeocystidia or leptocystidia, echinulate cells usually present, narrowly to broadly clavate basidia with four sterigmata, and hyaline, thin-walled, smooth, ellipsoid, cylindrical or allantoid, inamyloid, acyanophilous basidiospores with oily contents (Wang et al. 2023a). So far, 37 species have been accepted in the genus worldwide (Prasher 2015; Guan et al. 2020; Xu et al. 2020; Dong et al. 2024; Liu et al. 2024). In the present study, two new species have been identified; P. albohymenia is delimited by its membranaceous basidiomata with white hymenial surface, four types cystidia as stephanocyst, fusiform, cylindrical and capitate, and ellipsoid basidiospores. Furthermore, P. punctata is unique in the membranaceous, punctate basidiomata with white to pale yellow hymenial surface, fusiform cystidia, and allantoid basidiospores. In our phylogenies (Figs 1, 4), P. albohymenia was grouped with *P. olivacea* and *P. subpraetermissa* with strong supports. Morphologically, P. olivacea can be separated from P. albohymenia by having the ceraceous to farinaceous basidiomata, gravish olivaceous hymenial surface, two types cystidia

as fusiform $(28.5-39 \times 8.5-11 \mu m)$ and halocystidia $(42-50 \times 8-9 \mu m)$, smaller basidia $(17.5-20 \times 6-7 \mu m)$ and smaller basidiospores $(6.5-7.5 \times 3.2-4.5 \mu m;$ Dong et al. 2024). *P. subpraetermissa* is distinct from *P. albohymenia* by its longer subclavata basidia $(20-35 \times 6-8 \mu m)$ and smaller basidiospores $(6.2-7.5 \times 4-5 \mu m; Wu 1997)$. Furthermore, *P. punctata* was the sister to *P. fissurata* with strong supports. However, morphologically, the latter having the ceraceous to corneus basidiomata, smooth to tuberculate and white to cream hymenial surface and larger fusiform cystidia $(28-65 \times 6.5-15 \mu m; Guan et al. 2020)$.

The wood-inhabiting fungi are an extensively studied group of Basidiomycota, and the taxa of Hymenochaetales play a core group in the wood-inhabiting fungi (Dai 2012; Ryvarden and Melo 2014; Liu et al. 2021; Zhou et al. 2022; Deng et al. 2024; Wang et al. 2024), but the species of Hymenochaetales diversity is still not well-known in China, especially in subtropical and tropical areas, and many recently described taxa of this ecologically important Hymenochaetales group were reported from China (Zhao et al. 2014, 2015, 2016; Chen et al. 2020; Guan et al. 2021; Yu et al. 2021; Dong et al. 2024). In the present study, four new species within the order Hymenochaetales are described, based on both morphological and molecular phylogenetic analyses, and are also from the subtropics. This study enriches the wood-inhabiting fungal diversity in China.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

The research was supported by the National Natural Science Foundation of China (Project Nos. 32170004, U2102220), Forestry and Grass Science and Technology Innovation Joint Project of Yunnan Province (Project No. 202404CB090008), and the High-level Talents Program of Yunnan Province (YNQR-QNRC-2018-111), and the Science Foundation of Education Department of Yunnan Province (2025Y0845).

Author contributions

Conceptualization: HY, CZ. Data curation: CZ, HY, QL, MC. Formal analysis: CZ, LL, MC, QL, SZ, YD, HY. Funding acquisition: CZ, HY. Investigation: CZ, HY, YD. Methodology: HY, YD, CZ. Project administration: CZ. Resources: HY, CZ. Software: CZ, HY, MC, QL, SZ, YD, LL. Supervision: HY, CZ, YD. Validation: YD, CZ, HY. Visualization: CZ, HY, YD. Writing - original draft: HY, SZ, YD, CZ, MC, LL. Writing - review and editing: YD, HY, CZ.

Author ORCIDs

Yinglian Deng https://orcid.org/0000-0002-8220-508X Meng Chen https://orcid.org/0009-0005-9916-8704 Linfeng Liu https://orcid.org/0009-0003-4058-301X Sicheng Zhang https://orcid.org/0009-0003-6287-9823 Haisheng Yuan https://orcid.org/0000-0001-7056-140X Changlin Zhao https://orcid.org/0000-0002-8668-1075

Data availability

All of the data that support the findings of this study are available in the main text.

References

- Baltazar JM, Pildain MB, Gorjón SP, da Silveira RMB, Rajchenberg M (2014) Phylogenetic relationships of *Hydnum peroxydatum* support the synonymy of *Hydnochaete* with *Hymenochaete* (Hymenochaetaceae, Agaricomycetes). Mycologia 106: 323–327. https://doi.org/10.3852/13-154
- Bernicchia A, Gorjón SP (2010) Fungi Europaei 12: Corticiaceae s.l. Alassio: Edizioni Candusso, Italy, 1008 pp.
- Chen JZ, Zhao CL (2020) Morphological and molecular identification of four new resupinate species of *Lyomyces* (Hymenochaetales) from southern China. MycoKeys 65: 101–118. https://doi.org/10.3897/mycokeys.65.48660
- Chen CC, Wu SH, Chen CY (2017) Three new species of *Hyphodontia* s.l. (Basidiomycota) with poroid or raduloid hymenophore. Mycological Progress 16(5): 553–564. https://doi.org/10.1007/s11557-017-1286-0
- Chen Q, Du P, Vlasák J, Wu F, Dai YC (2020) Global diversity and phylogeny of *Fuscoporia* (Hymenochaetales, Basidiomycota). Mycosphere 11: 1477–1513. https://doi. org/10.5943/mycosphere/11/1/10
- Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Yang ZL, Dai YC (2019) Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97: 137–392. https://doi.org/10.1007/s13225-019-00427-4
- Cunningham GH (1963) The Thelephoraceae of Australia and New Zealand. Bulletin of the New Zealand Department of Scientific and Industrial Research 145: 1–359.
- Dai YC (2011) A revised checklist of corticioid and hydnoid fungi in China for 2010. Mycoscience 52(1): 69–79. https://doi.org/10.1007/S10267-010-0068-1
- Dai YC (2012) Polypore diversity in China with an annotated checklist of Chinese polypores. Mycoscience 53(1): 49-80. https://doi.org/10.1007/s10267-011-0134-3
- Dai YC, Yang ZL, Cui BK, Wu G, Yuan HS, Zhou LW, He SH, Ge ZW, Wu F, Wei YL, Yuan Y, Si J (2021) Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema 40: 770–805. https://https://doi.org/10.13346/j.mycosystema.210036
- Dai YF, Yuan Q, Yang X, Liu R, Liu DF, Yuan HS, Zhao CL (2025) Morphological characteristics and phylogenetic analyses reveal five new species of Hymenochaetales (Agaricomycetes, Basidiomycota) from southwestern China. MycoKeys 114: 133–175. https://doi.org/10.3897/mycokeys.114.143851
- Deng YL, Jabeen SN, Zhao CL (2024) Species diversity and taxonomy of Vararia (Russulales, Basidiomycota) with descriptions of six species from Southwestern China. MycoKeys 103: 97–128. https://doi.org/10.3897/mycokeys.103.118980
- Dong JH, He X, Zhao CL (2021) Skvortzovia yunnanensis, a new species of corticioid fungus from southern China. Kew Bulletin 76(2): 549–555. https://doi.org/10.1007/ S12225-021-09959-y
- Dong JH, Li Q, Yuan Q, Luo YX, Zhang XC, Dai YF, Zhou Q, Liu XF, Deng YL, Zhou HM, Muhammad A, Zhao CL (2024) Species diversity, taxonomy, molecular systematics and divergence time of wood-inhabiting fungi in Yunnan-Guizhou Plateau, Asia. Mycosphere 15: 1110–1293. https://doi.org/10.5943/mycosphere/15/1/10
- Du P, Cao TX, Wu YD, Zhou M, Liu ZB (2021) Two new species of Hymenochaetaceae on *Dracaena cambodiana* from tropical China. MycoKeys 80: 1–17. https://doi. org/10.3897/mycokeys.80.63997

- Felsenstein J (1985) Confidence intervals on phylogenetics: An approach using bootstrap. Evolution; International Journal of Organic Evolution 39: 783–791. https://doi. org/10.2307/2408678
- Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089): 1715– 1719. https://doi.org/10.1126/science.1221748
- Gafforov Y, Riebesehl J, Ordynets A, Langer E, Yarasheva M, Ghobad-Nejhad M, Zhou LW, Wang XW, Gugliotta AM (2017) *Hyphodontia* (Hymenochaetales, Basidiomycota) and similar taxa from Central Asia. Botany 95(11): 1041–1056. https://doi.org/10.1139/ cjb-2017-0115
- Guan QX, Zhao TJ, Zhao CL (2020) Morphological characters and phylogenetic analyses reveal two new species of *Peniophorella* from southern China. Mycological Progress 19: 397–404. https://doi.org/10.1007/s11557-020-01568-6
- Guan QX, Li YF, Zhao CL (2021) Morphological and phylogenetic evidence for recognition of two new species of *Hyphoderma* (Basidiomycota) from southern China, with a key to all Chinese *Hyphoderma*. MycoKeys 83: 145–160. https://doi.org/10.3897/ mycokeys.83.69909
- Guan QX, Huang J, Huang J, Zhao CL (2023) Five new species of Schizoporaceae (Basidiomycota, Hymenochaetales) from East Asia. MycoKeys 96: 25–56. https://doi. org/10.3897/mycokeys.96.99327
- Hallenberg N, Nilsson RH, Antonelli A, Wu SH, Maekawa N, Nordén B (2007) The Peniophorella praetermissa species complex (Basidiomycota). Mycological Research 111(12): 1366–1376. https://doi.org/10.1016/j.mycres.2007.10.001
- He SH, Dai YC (2012) Taxonomy and phylogeny of *Hymenochaete* and allied genera of Hymenochaetaceae (Basidiomycota) in China. Fungal Diversity 56: 77–93. https://doi.org/10.1007/s13225-012-0174-9
- He SH, Liu SL (2011) Two new species of *Hymenochaete* (Hymenochaetales) from China. Mycotaxon 115: 375–382. https://doi.org/10.5248/115.375
- He SH, Liu SL, Li HJ, Dai YC (2017) Two new species of *Hymenochaete* (Hymenochaetaceae, Basidiomycota) and *H. colliculosa* new to China from Shanxi Province. Phytotaxa 324(2): 168–178. https://doi.org/10.11646/phytotaxa.324.2.5
- He X, Shi ZJ, Zhao CL (2020) Morphological and molecular identification of two new species of *Tubulicrinis* (Hymenochaetaceae, Hymenochaetales) from southern China. Mycoscience 61: 184–189. https://doi.org/10.1016/j.myc.2020.03.008
- He MQ, Cao B, Liu F, Boekhout T, Denchev TT, Schoutteten N, Denchev CM, Kemler M, Gorjón SP, Begerow D, Valenzuela R, et al. (2024) Phylogenomics, divergence times and notes of orders in Basidiomycota. Fungal Diversity 126: 127–406. https://doi. org/10.1007/s13225-024-00535-w
- Hibbett DS, Bauer R, Binder M, Giachini AJ, Hosaka K, Justo A, Larsson E, Larsson KH, Lawrey JD, Miettinen O, Nagy LG (2014) 14 Agaricomycetes. In: McLaughlin D, Spatafora J (Eds) Systematics and Evolution. The Mycota, Vol. 7A. Springer, Berlin, Heidelberg, 373–429. https://doi.org/10.1007/978-3-642-55318-9_14
- James TY, Stajich JE, Hittinger CT, Rokas A (2020) Toward a fully resolved fungal tree of life. Annual Review of Microbiology 74: 291–313. https://doi.org/10.1146/an-nurev-micro-022020-051835
- Ji XH, He SH, Chen JJ, Si J, Wu F, Zhou LW, Vlasák J, Tian XM, Dai YC (2017) Global diversity and phylogeny of *Onnia* (Hymenochaetaceae) species on gymnosperms. Mycologia 109: 27–34. https://doi.org/10.1080/00275514.2016.1274619

- Justo A, Miettinen O, Floudas D, Ortiz-Santana B, Sjökvist E, Lindner D, Nakasone K, Niemelä T, Larsson KH, Ryvarden L, Hibbett DS (2017) A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biology 121(9): 798–824. https:// doi.org/10.1016/j.funbio.2017.05.010
- Kan YH, Gafforov Y, Li T, Zhou LW (2017a) Hyphodontia zhixiangii sp. nov. (Schizoporaceae, Basidiomycota) from Uzbekistan. Phytotaxa 299(2): 273–279. https://doi. org/10.11646/phytotaxa.299.2.12
- Kan YH, Qin WM, Zhou LW (2017b) *Hyphodontia mollissima* sp. nov. (Schizoporaceae, Hymenochaetales) from Hainan, southern China. Mycoscience 58(4): 297–301. https://doi.org/10.1016/j.myc.2017.04.003
- Karsten PA (1881) Enumeratio *Thelephorearum* Fr. et *Clavariearum* Fr. *Fennicarum*, systemate novo dispositarum. Revue Mycologique Toulouse 3(9): 21–23.
- Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108
- Kolařík M, Vohník M (2018) When the ribosomal DNA does not tell the truth: The case of the taxonomic position of *Kurtia argillacea*, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biology 122: 1–18. https://doi.org/10.1016/j.funbio.2017.09.006
- Larsen M, Cobb-Poulle LA (1990) *Phellinus* (Hymenochaetaceae). A survey of the world taxa. Synop Fungorum 3: 1–206. https://doi.org/10.2307/3760175
- Larsson KH (2007a) Re-thinking the classification of corticioid fungi. Mycological Research 111: 1040–1063. https://doi.org/10.1016/j.mycres.2007.08.001
- Larsson KH (2007b) Molecular phylogeny of *Hyphoderma* and the reinstatement of *Peniophorella*. Mycological Research 111: 185–195. https://doi.org/10.1016/j.my-cres.2006.10.002
- Larsson A (2014) AliView: A fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30: 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
- Larsson KH, Parmasto E, Fischer M, Langer E, Nakasone KK, Redhead SA (2006) Hymenochaetales: A molecular phylogeny for the hymenochaetoid clade. Mycologia 98(6): 926–936. https://doi.org/10.1080/15572536.2006.11832622
- Léger JC (1990) Étude critique et validation des espèces nouvelles d'*Hymenochaete* décrites par G.A. Escobar. Cryptogamie. Mycologie 11(4): 289-312. https://doi. org/10.5962/p.354325
- Léger JC (1998) Le genre Hymenochaete Léveillé. Bibliotheca Mycologica 171: 1–319.
- Li YC, Chen ML, Xiao WY, Zhang JZ, Zhao CL (2024) Molecular phylogeny and morphology reveal a new *Hymenochaete* species (Hymenochaetaceae, Basidiomycota) from China. Phytotaxa 664(3): 159–171. https://doi.org/10.11646/phytotaxa.664.3.1
- Liu ZB, Zhou M, Yuan Y, Dai YC (2021) Global diversity and taxonomy of *Sidera* (Hymenochaetales, Basidiomycota): Four new species and keys to species of the genus. Journal of Fungi 7: 251. https://doi.org/10.3390/jof7040251
- Liu SL, Zhou LW, He SH, Wang XW, May TW, He G, Chen SL (2022) Trechisporales emended with a segregation of Sistotremastrales ord. nov. (Basidiomycota). Mycosphere 13: 862–954. https://doi.org/10.5943/mycosphere/13/1/11
- Liu SL, Wang XW, Li GJ, Deng CY, Rossi W, Leonardi M, Liimatainen K, Kekki T, Niskanen T, Smith ME, Ammirati J (2024) Fungal diversity notes 1717–1817: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 124(1): 1–216. https://doi.org/10.1007/s13225-023-00529-0

- Luo X, Chen YH, Zhao CL (2021a) Morphological and phylogenetic characterization of fungi within Hymenochaetales: Introducing two new species from southern China. Nordic Journal of Botany 12(12): 39. https://doi.org/10.1111/njb.03414
- Luo X, Chen YH, Zhao CL (2021b) Lyomyces fissuratus and L. fumosus (Schizoporaceae, Hymenochaetales), new species from southern China. Annales Botanici Fennici 4(4–6): 58. https://doi.org/10.5735/085.058.0404
- Lv GY, Song TT, Zhang YY, Cai WM, Zhang ZF (2023) A comparative study on antioxidant activities of fermentation products of *Sanghuangporus sanghuang* and *S. vaninii* based on UPLC-triple-TOF-MS. Mycosystema 42(4): 939–948. https://doi. org/10.13346/j.mycosystema.220125
- Ma JC, Wei JR, Wang XR, Chen G, Sun HC, Li N (2024) Extracts of Sanghuangporus vaninii inhibit SARS-CoV-2 and inflammation. Mycosystema 43(1): 93–105. https:// doi.org/10.13346/j.mycosystema.230199
- Mao WL, Wu YD, Liu HG, Yuan Y, Dai YC (2023) A contribution to *Porogramme* (Polyporaceae, Agaricomycetes) and related genera. IMA Fungus 14: 5. https://doi.org/10.1186/s43008-023-00110-z
- Miettinen O, Larsson KH, Spirin V (2019) *Hydnoporia*, an older name for *Pseudochaete* and *Hymenochaetopsis*, and typification of the genus *Hymenochaete* (Hymenochaetales, Basidiomycota). Fungal Systematics and Evolution 4: 77–96. https://doi. org/10.3114/fuse.2019.04.07
- Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES Science Gateway: Enabling high-impact science for phylogenetics researchers with limited resources. Association for Computing Machinery 39: 1–8. https://doi.org/10.1145/2335755.2335836
- Nie T, Tian Y, Liu SL, Yang J, He SH (2017) Species of *Hymenochaete* (Hymenochaetales, Basidiomycota) on bamboos from East Asia, with descriptions of two new species. MycoKeys 20: 51–65. https://doi.org/10.3897/mycokeys.20.11754
- Nylander JAA (2004) MrModeltest v.2. Program distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden.
- Osman MAM, El-Nuby ASM (2023) First record of *Efibula tuberculata* (Basidiomycota: Polyporales) isolated from sugarcane in Egypt. Archiv für Phytopathologie und Pflanzenschutz 56: 295–306. https://doi.org/10.1080/03235408.2023.2184231
- Pacheco MC, Valenzuela R, Raymundo T, Pacheco L (2018) *Hymenochaete cifuentesii*, *H. potosina*, and *H. raduloides* spp. nov. from the tropical dry forest of Mexico. Mycotaxon 133: 499–512. https://doi.org/10.5248/133.499
- Parmasto E (2001) Hymenochaetoid fungi (Basidiomycota) of North America. Mycotaxon 79: 107–176.
- Parmasto E (2012) New taxa of *Hymenochaete* (Agaricomycetes, Hymenochaetales) with a note on *H. caucasica*. Mycotaxon 121: 477–484. https://doi.org/10.5248/121.477
- Parmasto E, Saar I, Larsson E, Rummo S (2014) Phylogenetic taxonomy of *Hymeno-chaete* and related genera (Hymenochaetales). Mycological Progress 13: 55–64. https://doi.org/10.1007/s11557-013-0891-9
- Petersen JH (1996) The danish mycological society's colour-chart. Foreningen til Svampekundskabens Fremme, Greve.
- Prasher IB (2015) Wood-rotting non-gilled Agaricomycetes of Himalayas. Fungal Diversity Research Series, Chiang Rai, 653 pp. https://doi.org/10.1007/978-94-017-9858-7
- Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625– 634. https://doi.org/10.1016/S0953-7562(09)80409-7

Riebesehl J, Langer E (2017) Hyphodontia s.l. (Hymenochaetales, Basidiomycota): 35 new combinations and new keys to currently all 120 species. Mycological Progress 16: 637–666. https://doi.org/10.1007/s11557-017-1299-8

- Riebesehl J, Langer EJ, Ordynets A, Striegel MM, Witzany C (2015) Hyphodontia borbonica, a new species from La Réunion. Mycological Progress 14: 1–7. https://doi. org/10.1007/s11557-015-1126-z
- Riebesehl J, Yurchenko E, Nakasone KK, Langer E (2019) Phylogenetic and morphological studies in *Xylodon* (Hymenochaetales, Basidiomycota) with the addition of four new species. MycoKeys 47: 97–137. https://doi.org/10.3897/mycokeys.47.31130
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/ sysbio/sys029
- Rosenthal LM, Larsson KH, Branco S, Chung JA, Glassman SI, Liao HL, Peay KG, Smith DP, Talbot JM, Taylor JW, Vellinga EC (2017) Survey of corticioid fungi in North American pinaceous forests reveals hyper diversity, underpopulated sequence databases, and species that are potentially ectomycorrhizal. Mycologia 109: 115–127. https:// doi.org/10.1080/00275514.2017.1281677

Ryvarden L (2005) The genus Inonotus, a synopsis. Synopsis Fungorum 21: 1-149.

- Ryvarden L, Melo I (2014) Poroid fungi of Europe. Synopsis Fungorum 31: 1-455.
- Telleria MT, Dueñas M, Beltrán-Tejera E, Rodríguez-Armas JL, Martín MP (2012) A new species of *Hyphoderma* (Meruliaceae, Polyporales) and its discrimination from close-ly related taxa. Mycologia 104: 1121–1132. https://doi.org/10.3852/11-344
- Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
- Viner I, Miettinen O (2022) *Lyomyces denudatus*, a new species with a disjunct distribution. Lilloa 59: 377–385. https://doi.org/10.30550/j.lil/2022.59.S/2022.09.14
- Viner I, Bortnikov F, Miettinen O (2022) On six African species of *Lyomyces* and *Xylodon*. Fungal Systematics and Evolution 8: 163–178. https://doi.org/10.3114/fuse.2021.08.13
- Vu D, Groenewald M, Vries M, Gehrmann T, Stielow B, Eberhardt U (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92(1): 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
- Wang XW, May TW, Liu SL, Zhou LW (2021) Towards a natural classification of *Hyphodontia* sensu lato and the trait evolution of basidiomata within Hymenochaetales (Basidiomycota). Journal of Fungi 7(6): 478. https://doi.org/10.3390/jof7060478
- Wang XW, Liu SL, Zhou LW (2023a) An updated taxonomic framework of Hymenochaetales (Agaricomycetes, Basidiomycota). Mycosphere 14: 452–496. https://doi. org/10.5943/mycosphere/14/1/6
- Wang CG, Zhao H, Liu HG, Zeng GY, Yuan Y, Dai YC (2023b) A multi-gene phylogeny clarifies species diversity, taxonomy, and divergence times of *Ceriporia* and other related genera in Irpicaceae (Polyporales, Basidiomycota). Mycosphere 14(1): 1665–1729. https://doi.org/10.5943/mycosphere/14/1/19
- Wang CG, Dai YC, Kout J, Gates GM, Liu HG, Yuan Y, Vlasák J (2024) Multi-gene phylogeny and taxonomy of *Physisporinus* (Polyporales, Basidiomycota). Mycosphere 15: 1455–1521. https://doi.org/10.5943/mycosphere/15/1/12
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White

TJ (Eds) PCR protocols: A Guide to Methods And Applications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

- Wijayawardene NN, Phillips AJ, Pereira DS, Dai DQ, Aptroot A, Monteiro JS, Druzhinina IS, Cai F, Fan X, Selbmann L, Coleine C (2022) Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). Fungal Diversity 114: 463–490. https://doi.org/10.1007/s13225-022-00500-5
- Wu SH (1997) New species and new records of *Hyphoderma* (Basidiomycotina) from Taiwan. Botanical Bulletin of Academia Sinica: 38.
- Wu YD, Yuan Y (2020) Morphological characters and molecular data reveal a new species of *Porodaedalea* (Hymenochaetaceae, Basidiomycota) from China. Mycosystema 39(2): 256–264.
- Wu F, Ren GJ, Wang L, Oliveira-Filho JRC, Gibertoni TB, Dai YC (2019a) An updated phylogeny and diversity of *Phylloporia* (Hymenochaetales): Eight new species and keys to species of the genus. Mycological Progress 18: 615–639. https://doi.org/10.1007/s11557-019-01476-4
- Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC (2019b) Resource diversity of Chinese macrofungi: Edible, medicinal and poisonous species. Fungal Diversity 98: 1–76. https:// doi.org/10.1007/s13225-019-00432-7
- Wu F, Man XW, Tohtirjap A, Dai YC (2022b) A comparison of polypore fungal and species composition in forest ecosystems of China, North America, and Europe. Forest Ecosystems 9: 100051. https://doi.org/10.1016/j.fecs.2022.100051
- Wu F, Zhou LW, Vlasák J, Dai YC (2022a) Global diversity and systematics of Hymenochaetaceae with poroid hymenophore. Fungal Diversity 113: 1–192. https://doi. org/10.1007/s13225-021-00496-4
- Xu J, Guan QX, Zhao CL (2020) *Peniophorella cremea* sp. nov. from China. Phytotaxa 464: 175–182. https://doi.org/10.11646/phytotaxa.464.2.4
- Yang J, He SH (2014) *Hymenochaete* in China. 8. *H. biformisetosa* sp. nov. with a key to species with denticulate setae. Mycotaxon 128: 137–144. https://doi.org/10.5248/128.137
- Yang J, Dai LD, He SH (2016) Hymenochaetopsis nom. nov. proposed to replace Pseudochaete (Hymenochaetales, Basidiomycota) with descriptions of *H. laricicola* sp. nov and *H. gigasetosa* new to China. Mycological Progress 15: 13. https://doi. org/10.1007/s11557-015-1153-9
- Yu J, Wang XW, Liu SL, Shen S, Zhou LW (2021) Taxonomy and phylogeny of *Resinicium* sensu lato from Asia-Pacific revealing a new genus and five new species (Hymenochae-tales, Basidiomycota). IMA Fungus 12: 19. https://doi.org/10.1186/s43008-021-00071-1
- Yuan Y, Bian LS, Wu YD, Chen JJ, Wu F, Liu HG, Zeng GY, Dai YC (2023) Species diversity of pathogenic wood-rotting fungi (Agaricomycetes, Basidiomycota) in China. Mycology 14: 204–226. https://doi.org/10.1080/21501203.2023.2238779
- Yuan Q, Li Y, Dai Y, Wang K, Wang Y, Zhao C (2024) Morphological and molecular identification for four new wood-inhabiting species of *Lyomyces* (Basidiomycota) from China. MycoKeys 110: 67–92. https://doi.org/10.3897/mycokeys.110.133108
- Yurchenko E, Wu SH (2014) Three new species of *Hyphodontia* with peg-like hyphal aggregations. Mycological Progress 13: 533–545. https://doi.org/10.1007/s11557-013-0935-1
- Yurchenko E, Riebesehl J, Langer E (2017) Clarification of *Lyomyces sambuci* complex with the descriptions of four new species. Mycological Progress 16: 865–876. https://doi.org/10.1007/s11557-017-1321-1
- Yurchenko E, Riebesehl J, Langer E (2020a) Fasciodontia gen. nov. (Hymenochaetales, Basidiomycota) and the taxonomic status of Deviodontia. Mycological Progress 19: 171–184. https://doi.org/10.1007/s11557-019-01554-7

- Yurchenko E, Wu SH, Maekawa N (2020b) Three new species of *Peniophorella* (Basidiomycota) from East Asia. Nova Hedwigia 111: 473–495. https://doi.org/10.1127/ nova_hedwigia/2020/0598
- Zhang J, Hou YH, Du JF, Zhou QS, Li N (2023a) A comparative study on immunomodulatory effects of water extracts of *Inonotus hispidus*, *Sanghuangporus sanghuang* and *S. vaninii*. Mycosystema 42(4): 907–915. https://doi.org/10.13346/j.mycosystema.220074
- Zhang QY, Liu HG, Papp V, Zhou M, Dai YC, Yuan Y (2023b) New insights into the classification and evolution of *Favolaschia* (Agaricales, Basidiomycota) and its potential distribution, with descriptions of eight new species. Mycosphere 14: 777–814. https:// doi.org/10.5943/mycosphere/14/1/10
- Zhao CL, Wu ZQ (2017) *Ceriporiopsis kunmingensis* sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Mycological Progress 16: 93–100. https://doi.org/10.1007/s11557-016-1259-8
- Zhao CL, He XS, Wanghe KY, Cui BK, Dai YC (2014) *Flammeopellis bambusicola* gen. et. sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters andphylogenetic analysis. Mycological Progress 13: 771–780. https://doi.org/10.1007/s11557-014-0960-8
- Zhao CL, Chen H, Song J, Cui BK (2015) Phylogeny and taxonomy of the genus Abundisporus (Polyporales, Basidiomycota). Mycological Progress 14: 38. https://doi. org/10.1007/s11557-015-1062-y
- Zhao CL, Wu F, Dai YC (2016) *Leifiporia rhizomorpha* gen. et sp. nov. and *L. eucalypti* comb. nov. in Polyporaceae (Basidiomycota). Mycological Progress 15: 799–809. https://doi.org/10.1007/s11557-016-1210-z
- Zhao CL, Qu MH, Huang RX, Karunarathna SC (2023b) Multi-gene phylogeny and taxonomy of the wood-rotting fungal genus *Phlebia* sensu lato (Polyporales, Basidiomycota). Journal of Fungi 9: 1–41. https://doi.org/10.3390/jof9030320
- Zhao H, Dai YC, Wu F, Liu XY, Maurice S, Krutovsky KV, Pavlov IN, Lindner DL, Martin FM, Yuan Y (2023a) Insights into the ecological diversification of the Hymenochaetales based on comparative genomics and phylogenomics. Genome Biology and Evolution 15(8): 1–15. https://doi.org/10.1093/gbe/evad136
- Zhao H, Wu YD, Yang ZR, Liu HG, Wu F, Dai YC, Yuan Y (2024) Polypore fungal and species diversity in tropical forest ecosystems of Africa, America and Asia, and a comparison with temperate and boreal regions of the Northern Hemisphere. Forest Ecosystems 11: 100200. https://doi.org/10.1016/j.fecs.2024.100200
- Zhou LW, Vlasák J, Dai YC (2016) Taxonomy and phylogeny of *Phellinidium* (Hymenochaetales, Basidiomycota): A redefinition and the segregation of *Coniferiporia* gen. nov. for forest pathogens. Fungal Biology 120: 988–1001. https://doi.org/10.1016/j. funbio.2016.04.008
- Zhou M, Wu F, Dai YC, Vlasák J (2022) Two new species of *Phylloporia* (Hymenochaetales) from the Neotropics. MycoKeys 90: 71–83. https://doi.org/10.3897/mycokeys.90.84767
- Zhou M, Dai YC, Vlasák J, Liu HG, Yuan Y (2023) Updated systematics of *Trichaptum* s.l. (Hymenochaetales, Basidiomycota). Mycosphere 14: 815–917. https://doi. org/10.5943/mycosphere/14/1/11