MYCOSPHERE

ISSN 2077 - 7019 (Electronic) ISSN 2077 - 7000 (Linking)

Recent Papers Volume 15 - 2024 Issue 1

11. Mycosphere Notes 469-520 Hyde KD et al. (2024)

10. Species diversity, taxonomy, molecular systematics and divergence time of wood-inhabiting fungi in Yunnan-Guizhou Plateau, Asia Dong JH et al. (2024)

9. A yeast love triangle: multiple hybridizations shape genome evolution in the Pichia cactophila species complex Mixão V et al. (2024)

 Saprobic ascomycetes associated with woody litter from the Greater Mekong Subregion (Southwestern China and Northern Thailand) Ren GC et al. (2024)

7. Polyphasic taxonomy clarifies the relationships between Butyriboletus and Exsudoporus, and new taxa and reports of Boletaceae from China Wang Y et al. (2024)

 Hyperdiverse Rhytismatales on twigs of Rhododendron spp. Guo MJ et al. (2024)

5. Culturable Mycobiota from Guizhou Wildlife Park in China Zhang ZY et al. (2024)

 Study on the diversity of rust pathogens from different hosts in Guizhou Province, China Sun JE et al. (2024)

3. RETRACTED: New insights into Gymnopus s.l.: its systematic rearrangements and novel taxa Hu JJ et al. (2024)

2. Unveiling fungal diversity in China: New species and records within the Xylariaceae Li QR et al. (2024)

Mycosphere

Mycosphere is an international peer-reviewed journal with swift publication of high-quality papers on fungal biology. Mycosphere is open access and offers an outlet for the publications of the mycology community. All manuscripts will undergo peer review before acceptance. Copyright is retained by the authors.

Highlights of publication

- Peer-reviewed manuscripts and monographs
- Open access
- Quick turnaround
- · For policy on open access charges see under instructions for authors
- Special volumes

To submit an article visit submissions page

Mycosphere will publish one volume each year and extra special issues as necessary.

All articles in this journal are published online first and are citable by their permanent DOI. This online version is considered the official publication, not simply a prepublication service, and should be considered the Version of Record as defined by NISO RP-8-2008. After online publication, any corrections require the publication of an Erratum.

16.525 (2021) Impact factor

Q1 in category "Ecology, Evolution, Behavior and Systematics" and " Plant Science"

About Mycosphere

Contact

Recent Papers Volume 15 - 2024 Issue 1

11. Mycosphere Notes 469-520 Hyde KD et al. (2024)

10. Species diversity, taxonomy, molecular systematics and divergence time of wood-inhabiting fungi in Yunnan-Guizhou Plateau, Asia Dong JH et al. (2024)

9. A yeast love triangle: multiple hybridizations shape genome evolution in the Pichia cactophila species complex
Mixão V et al. (2024)

8. Saprobic ascomycetes associated with woody litter from the Greater Mekong Subregion (Southwestern China and Northern Thailand) Ren GC et al. (2024)

ARTICLE

Species diversity, taxonomy, molecular systematics and divergence time of wood-inhabiting fungi in Yunnan-Guizhou Plateau, Asia

Dong JH^{1,2}, Li Q², Yuan Q², Luo YX², Zhang XC², Dai YF², Zhou Q², Liu XF³, Deng YL², Zhou HM^{1,2}, Muhammad A^{2*} and Zhao CL^{1,2*}

¹ The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming 650224, P.R. China

² College of Forestry, Southwest Forestry University, Kunming 650224, China

³ School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand

Citation – Dong JH, Li Q, Yuan Q, Luo YX, Zhang XC, Dai YF, Zhou Q, Liu XF, Deng YL, Zhou HM, Muhammad A, Zhao CL 2024 – Species diversity, taxonomy, molecular systematics and divergence time of wood-inhabiting fungi in Yunnan-Guizhou Plateau, Asia. Mycosphere 15(1), 1110-1293, Doi 10.5943/mycosphere/15/1/10

Abstract

Wood-inhabiting fungi play a fundamental role in ecosystem processes, particularly in wood degradation and the recycling of organic matter. Recognized as pivotal contributors to the intricate balance of forest ecosystems, these fungi are renowned as "key players" due to their enzymatic prowess, effectively breaking down woody components like lignin, cellulose, and hemicellulose. In the current study, we embarked on an extensive collection expedition spanning various ecological niches. Subsequently, a comprehensive analysis of phylogenetic relationships among fungal woodinhabiting collections was conducted, based on DNA sequences from multiple loci. These loci encompassed the internal transcribed spacer (ITS) regions, the large subunit nuclear ribosomal RNA gene (nLSU), small subunit mitochondrial rRNA gene sequences (mtSSU), translation elongation factor 1-α gene (TEF1), RNA polymerase II largest subunit (RPB1), and the second subunit of RNA polymerase II (RPB2). This multi-locus approach allowed for a robust assessment of the evolutionary relationships within the fungal community. Our analyses revealed the new families Hypochniciaceae and Neohypochniciaceae, and a new genus Donkiella which are introduced forty-two new species, novel species described in this paper include Artomyces niveus, A. yunnanensis, Corticium roseoalbum, Dendrothele yunnanensis, Donkiella yunnanensis, Efibula daweishanensis, Etheirodon roseoalbum, Fibrodontia bambusicola, Hydnoporia pinicola, H. yunnanensis, Lyomyces daweishanensis, L. incanus, L. lincangensis, L. luteoalbus, L. qujingensis, L. sinensis, Neohypochnicium daweishanense, N. farinaceum, N. murinum, N. velutinum, N. yunnanense, N. zixishanense, Peniophorella daweishanensis, P. olivacea, mopanshanensis, Phlebiopsis daweishanensis, Radulomyces Phanerochaete hydnoides, R. yunnanensis, R. zixishanensis, Scytinostroma daweishanense, Skeletocutis rhizomorpha, Skvortzovia incana, Steccherinum lincangense, S. longiaculeiferum, weishanense, S. Subulicystidium yunnanense, Tubulicrinis pini, Xylodon bamburesupinus, X. fissilus, X. hydnoidus, X. olivaceobubalinus and X. pingbianensis. To enhance accessibility and understanding, the paper includes illustrated descriptions of the newly proposed species and comprehensive notes on the genera under scrutiny.

Keywords – 45 new taxa – Basidiomycota – Hymenochaetales – Molecular systematics – Polyporales – Taxonomy – Wood-decaying fungi

INTRODUCTION

Wood-inhabiting fungi, primarily basidiomycetes, possess industrial, medicinal, edible, and economic value while others contain toxic metabolites (Wu et al. 2019, Zhou et al. 2022, Cheng et al. 2023, Niego et al. 2023) They grow in various kinds of living trees, dead and fallen trunks, fallen branches and stumps (M'Barek et al. 2020, Runnel et al. 2021, Dong et al. 2023a). Woodinhabiting fungi, with their profound impact on ecosystem processes, stand out as pivotal contributors to the intricate balance and energy flow within forest ecosystems (Dai et al. 2015b, Li et al. 2022a, Xu et al. 2023). They have an ability to degrade plant remains and different environmental contaminants through their extensive capabilities of organic compound degradation (James et al. 2020). Wood-inhabiting fungi produce ligninolytic and cellulolytic enzymes that break down lignins, celluloses, and hemicelluloses, underscores their significance in the recycling of organic matter and nutrient cycling, typically catogerized as the white-rot and brown-rot fungi (Bucher et al. 2004, Liu et al. 2022b). Wood-inhabiting fungi, a large group of Basidiomycota, exhibit diverse morphological features in their basidiomata, and this group include fungi known as poylpores, corticioids, hydnoids within aphyllophoroid fungi, in which the poylpores own poroid hymenopore, and the corticioids have the smooth to tuberculate hymenophore, and the hydnoids have the hydnoid or grandinoid or odontioid hymenophore (Hjortstam et al. 1987). They are cosmopolitan and rich in diversity, growing in tropical, subtropical and temperate regions (Gilbertson & Ryvarden 1987, Núñez & Ryvarden 2001, Bernicchia & Gorjón 2010, Dai 2012, Ryvarden & Melo 2014, Hyde et al. 2017a, b, Tibpromma et al. 2017, Dai et al. 2021, Jayawardena et al. 2023, Mao et al. 2023, Zhao et al. 2023a). Hence, wood-inhabiting fungi, important strategic biological resources, represent a captivating facet of biodiversity, showcasing a remarkable tapestry of morphological, phylogenetic, and ecological diversity (Park et al. 2020, He & Zhao 2022, Liu et al. 2023c). To enhance resource utilization and minimize the impact of detrimental species, it is essential to systematically identify and thoroughly sample these fungi. The accurate recognition of species diversity also holds a significant role in advancing global conservation initiatives for woodinhabiting fungi (Krah et al. 2018, Yu et al. 2021a, Zhou & May 2023). The phylogenetic diversity of this group has been extensively investigated recently (Larsson et al. 2004, Justo et al. 2017, Chen et al. 2021, Guan et al. 2023, Zhao et al. 2023a) in various regions worldwide, including Africa (Kinge et al. 2013), Asia (Doğan & Kurt 2016, Cho et al. 2019, Semwal & Bhatt 2019, Gafforov et al. 2020, Yusran et al. 2021, Aman et al. 2022), Europe (Dimou et al. 2016, Fink et al. 2021), and North America (Zhou et al. 2016b). In China, aside from the nationwide records of wood-inhabiting fungi (Dai 2011, 2012), evaluations have been conducted in several provinces (Dai et al. 2011, Bau et al. 2013, 2015, Ma et al. 2022) and renowned reserves (Zhou et al. 2011, Zhou & Dai 2012, Dai et al. 2015b, Yang et al. 2021, Wang et al. 2021c, Tuo et al. 2022).

Yunnan Province is located in the southwest of China, in the Yunnan-Guizhou Plateau. The strategic position of Yunnan Province as an "Ecological Security Barrier in Southwest China" and "Biodiversity Treasure" underscores its crucial role in the over all national ecological safety and conservation of biodiversity (Yan et al. 2021). Northern Yunnan reaches elevations of more than 5000 m.a.s.l, with subalpine environments. Central Yunnan forms part of the Yunnan-Guizhou Plateau, and has an elevation of about 1900 m.a.s.l, and a temperate climate. Southern Yunnan lies in the lower elevations and has sub-tropical to tropical climatic zones (Liu et al. 2023b). The climate in Yunnan offers conducive environments for the speciation and diversification of various life forms (Feng & Yang 2018, Wang et al. 2018a, Mi et al. 2021). This climatic diversity index, with over 6000 recorded fungal species (Liu et al. 2023b). The forest coverage rate of the province has reached 65.04%, harboring 19333 higher plant species, which belong to 3084 genera and 440 families, constituting 50.1% of the nation's total (Yan et al. 2021). Forty-three main families (>100 species) account for more than 77% (11,662 species) of all angiosperm species in Yunnan, and

nearly half of all angiosperms in Yunnan are represented by three families as Asteraceae Bercht. & J. Presl, Orchidaceae Juss. and Poaceae Barnhart, (Qian et al. 2020). Thirteen main genera comprise over 100 species, including core genera *Rhododendron* L. (349 species, 54% of China) and *Pedicularis* L. (196 species, 59% of China, Qian et al. 2020). Besides, 2 273 species of vertebrates, accounting for 51.4% of the country's total, alongside a network of 166 conservation areas, including 21 designated as National Nature Reserves (Yan et al. 2021, Fig. 1).

Figure 1 – The number of the National Nature Reserves and vegetation types in Yunnan, Southwest China.

The diversity of seed plants in the Yunnan Province is higher than in other areas in China, and the endemic species of woody plants are rich, and supply substrates for wood-inhabiting fungi (He & Zhao 2022, Dong et al. 2023a). In recent years, several studies conducted on wood-inhabiting fungi in Yunnan Province, China (Luo et al. 2022, Qu et al. 2022, Wu et al. 2022, Zou et al. 2022, Dong et al. 2023a, b, Duan et al. 2023a, b, Guan et al. 2023, Liu et al. 2023c, Yang et al. 2023, Zhang et al. 2023, Yu et al. 2023a, Zhao et al. 2023a, Yang et al. 2024), however, the diversity of wood-inhabiting species has not been thoroughly investigated in Yunnan Province. It is anticipated that numerous wood-inhabiting fungi in the Yunnan Province remain to be identified, harnessed, and conserved. The current study aims to carry out the classification and phylogenetic

relationships of the wood-inhabiting fungi within the Basidiomycota. In the present study, extensive morphological examinations, combined with analyses of multi-gene sequences data support the introduction of two families of wood-inhabiting fungi, a new genus, and 42 new species belonging to 22 genera, 17 families and six orders.

MATERIALS AND METHODS

Sample Collection and Herbarium Specimen Preparation

Fresh basidiomata of the fungi growing on angiosperm branches were collected from the Chuxiong, Dali, Dehong, Honghe, Kunming, Lijiang, Lincang, Puer, Qujing, Wenshan and Yuxi of Yunnan Province, China. A total of 131 specimens were studied in this study. The samples were photographed in situ and fresh macroscopic details were recorded. Photographs were taken by a Jianeng 80D camera (Tokyo, Japan). All of the photos were focus stacked and merged using Helicon Focus Pro 7.7.5 software. Specimens were dried in an electric food dehydrator at 40 °C, then sealed and stored in an envelope bag and deposited in the herbarium of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, China.

Morphological studies

Macromorphological descriptions are based on field notes and photos captured in the field and laboratory and follow the color terminology of Petersen (1996). Micromorphological data were obtained from the dried specimens following observation under a light microscope (Dai et al. 2015a). The following abbreviations are used for the micro characteristic description: KOH = 5% potassium hydroxide, CB = Cotton Blue, CB– = acyanophilous, CB+ = cyanophilous, IKI = Melzer's reagent, IKI– = both non-amyloid and non-dextrinoid, L = mean spore length (arithmetic average of all spores), W = mean spore width (arithmetic average of all spores), Q = variation in the L/W ratios between the specimens studied, n (a/b) = number of spores (a) measured from given number (b) of specimens.

Molecular procedures and phylogenetic analyses

CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd, Beijing) was used to obtain genomic DNA from dried specimens, according to the previous study (Zhao & Wu 2017). The ITS region was amplified with primer pair ITS5 and ITS4 (White et al. 1990). The nuclear LSU region was amplified with primer LR0R and pair LR7 (https://sites.duke.edu/vilgalyslab/rdna_primers_for_fungi/). The mitochondrial SSU region was amplified with primer pairs MS1 and MS2 (White et al. 1990). TEF1 was amplified with primer pairs EF1-983 F and EF1-2218R (Rehner & Buckley 2005). RPB2 was amplified with primer pairs bRPB2-6F and bRPB2-7.1R (Liu et al. 1999, Matheny et al. 2002, Matheny 2005).

The PCR protocol for ITS and mtSSU was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 58 °C for ITS and 55 °C for mtSSU for 45 s and 72 °C for 1 min, and a final extension of 72 °C for10 min. The PCR protocol for nLSU and TEF1 was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s,48 °C for nLSU and 59 °C for TEF1 for 1 min and 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR procedure for RPB1 was 94 °C for 2 min, followed by 10 cycles at 94 °C for 40 s, 60 °C for 40 s and 72 °C for 2 min, then followed by 37 cycles at 94 °C for 45 s, 55 °C for 1.5 min and 72 °C for 2 min, and a final extension of 72 °C for 10 min. The PCR procedure for RPB2 was 95 °C for 2.5 min, followed by 40 cycles at 95 °C for 30 s, 52 °C for 1 min and 72 °C for 1 min, then followed by 40 cycles at 72 °C for 1.5 min, and final extension of 72 °C for 1 min, then followed by 40 cycles at 72 °C for 1.5 min, and final extension of 72 °C for 1 min, then followed by 40 cycles at 72 °C for 1.5 min, and final extension of 72 °C for 1 min, then followed by 40 cycles at 72 °C for 1.5 min, and final extension of 72 °C for 5 min. The PCR products were purified and sequenced at Kunming Tsingke Biological Technology Limited Company, Kunming, Yunnan Province, P.R. China. All newly generated sequences were deposited in GenBank (Table 1).

The sequences were aligned in MAFFT version 7 (Katoh et al. 2019) using the G-INS-i strategy. The alignment was adjusted manually using AliView version 1.27 (Larsson 2014). The

dataset was initially aligned and later, ITS, nLSU, mtSSU, RPB1, RPB2 and TEF1 sequences were combined using Mesquite version 3.51.

Maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) analyses were applied to the combined three datasets following the methods outlined in a previous study (Zhao & Wu 2017, and the tree construction procedure was performed in PAUP* version 4.0b10 (Swofford 2002). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1000 random sequence additions. Max-trees were set to 5000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was assessed using bootstrap (BT) analysis with 1000 replicates (Felsenstein 1985). Descriptive tree statistics-tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each maximum parsimonious tree generated. Additionally, the multiple sequence alignment was also analyzed using maximum likelihood (ML) in RAxML-HPC2 through the Cipres Science Gateway (Miller et al. 2012). Branch support (BS) for ML analysis was determined by 1000 bootstrap replicates.

jModelTest v2 (Darriba et al. 2012) was used to determine the best-fit evolutionary model for each data set for Bayesian inference (BI), which was performed using MrBayes 3.2.7a (Ronquist et al. 2012). The first one-fourth of all generations was discarded as burn-in. The majority rule consensus tree of all remaining trees was calculated. Branches were considered as significantly supported if they received maximum likelihood bootstrap value (BS) >70%, maximum parsimony bootstrap value (BT) >70%, or Bayesian posterior probabilities (BPP) >0.95.

Divergence Time Estimation

The divergence times of two new families were estimated with the BEAST v2.6.5 software package (Bouckaert et al. 2014) based on ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 sequence representing all main lineages in Basidiomycota (Table 2). jModelTest (Darriba et al. 2012) with calculation under Akaike information criterion was used to estimate the best-fit evolutionary model for each alignment subjected to phylogenetic analysis. Two time points were selected for calibration: (1) 90 million years ago (Mya) representing the minimum age of Agaricales by *Archaeomarasmius leggetti*, a fossil agaricoid species preserved in a Dominican amber; (2) 125 Mya representing the minimum age of Hymenochaetaceae by *Quatsinoporites cranhamii*, a fossil poroid species collected from Apple Bay on Vancouver Island. According to these time points, the offset age with a gamma distribution prior (scale = 20, shape = 1) for Agaricales was set as 90 Mya, and for Hymenochaetaceae as 125 Mya. After 50 million generations, the first 10% of the sampled trees every 1000th generation were removed as burn-in. The resulting log file was checked for chain convergence using Tracer 1.5.

Sequences of Schizophyllum fasciatum Pat. were retrieved from GenBank and used as outgroup taxa in the ITS+nLSU analysis (Fig. 2); Pterula echo D.J. McLaughlin & E.G. McLaughlin and Merulicium fusisporum (Romell) J. Erikss. & Ryvarden were selected as outgroup taxa in the ITS+nLSU analysis (Fig. 3) as in Zhao et al. (2016a); Punctularia strigosozonata (Schwein.) P.H.B. Talbot and Punctulariopsis obducens (Hjortstam & Ryvarden) Ghob.-Nejh. were selected as outgroup taxa in the ITS+nLSU analysis (Fig. 4) as in Ghobad-Neihad et al. (2021); Resinicium austroasianum Jia Yu, Xue W. Wang, S.L. Liu & L.W. Zhou and R. luteosulphureum Rajchenb. (Rick) Baltazar & were selected as outgroup taxa in the ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 analysis (Fig. 5) as in Wang et al. (2023); Fomitiporia gabonensis Amalfi & Decock and F. rhamnoides T.Z. Liu & F. Wu were selected as outgroup taxa in the ITS analysis (Fig. 6) following Wang et al. (2023). Sequences of Basidioradulum radula (Fr.) Nobles retrieved from GenBank were used as the outgroup in the ITS+nLSU+mtSSU analysis (Fig. 7); Hymenochaete ochromarginata P.H.B. Talbot and H. rubiginosa (Dicks.) Lév. were selected as an outgroup in the ITS+nLSU analysis (Fig. 8) as in Guan et al. (2023); Rickenella *fibula* (Bull.)

Order/Family	Species name	Sample no.			GenBank ac	ccessions no.			References
·	•	•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	—
Agaricomycetes									
Agaricales/Agaricaceae	Agaricus campestris	AFTOL-ID 1492	DQ486682	DQ110871	_	DQ516068	_	_	He et al. (2019)
	Agaricus luteopileus	ZRL 20120589	MK617868	MK617780	_	_	_	MK614377	Cao et al. (2021a)
-/Incertae sedis	Dendrothele acerina	G0632	_	MK277925	_	_	_	_	Varga et al. (2019)
	Dendrothele alliacea	G0488	_	MK277926	_	_	_	_	Varga et al. (2019)
	Dendrothele americana	FP101995	-	NG071235	_	_	_	-	Binder et al. (2005)
	Dendrothele bisporigera	G0955	-	MK277927	_	_	_	-	Varga et al. (2019)
	Dendrothele candida	HHB-3843	_	AY293177	_	_	_	_	Binder et al. (2005)
	Dendrothele incrustans	HHB-19092	MW740330	_	_	_	_	-	Unpublished
	Dendrothele microspora	FP 101998	00694474	00694474	_	_	_	_	Unpublished
	Dendrothele griseocana	CBS 340.66	MH858816	MH870455	_	_	_	-	Vu et al. (2019)
	Dendrothele minutissima	G1841	_	MK277929	_	_	_	_	Varga et al. (2019)
	Dendrothele nivosa	CBS 125843	MH863802	MH875264	_	_	_	-	Vu et al. (2019)
	Dendrothele salicicola	G0614	_	MK277932	_	_	_	_	Varga et al. (2019)
	Dendrothele strumosa	G1867	_	MK277936	_	_	_	_	Varga et al. (2019)
	Dendrothele	CLZhao 17814 *	OR094484	OR449910	OR469061	_	_	_	Present study
	yunnanensis								U U
-/Pterulaceae	Merulicium fusisporum	Hjm s.n.	EU118647	EU118647	_	_	_	-	Larsson (2007a)
	Pterula echo	AFTOL-ID711	DQ494693	AY629315	_	_	_	-	Wang et al. (2018)
-/Radulomycetaceae	Aphanobasidium	HHB-822	GU187509	GU187567	_	_	_	-	Larsson (2007a)
-	pseudotsugae								
	Aphanobasidium	UC 2023153	KP814353	AY586696	_	GU187455	GU187781	GU187695	Larsson (2007a)
	pseudotsugae								
	Radulomyces confluens	Cui 5977	KU535661	KU535669	_	_	_	_	Wang et al. (2018)
	Radulomyces confluens	He 2224	KU535662	KU535670	_	_	_	_	Wang et al. (2018)
	Radulomyces copelandii	Dai 15061	KU535664	KU535672	_	_	_	_	Wang et al. (2018)
	Radulomyces copelandii	Wu 9606-5	KU535663	KU535671	_	_	_	_	Wang et al. (2018)
	Radulomyces hydnoides	CLZhao 21337	OR096181	OR449911	OR469062	OR687195	_	OR531378	Present study
	Radulomyces hydnoides	CLZhao 21342	OR096182	OR449912	OR469063	_	_	_	Present study
	Radulomyces hydnoides	CLZhao 21351	OR096183	OR449913	OR469064	OR687196	OR729440	-	Present study
	Radulomyces hydnoides	CLZhao 21632 *	OR096184	OR449914	OR469065	_	OR729441	OR531379	Present study
	Radulomyces hydnoides	CLZhao 21668	OR096185	OR449915	OR469066	_	_	OR531380	Present study
	Radulomyces hydnoides	CLZhao 21815	OR096186	OR449916	OR469067	_	_	OR531381	Present study
	Radulomyces molaris	ARAN-Fungi 2003	_	MT232311	_	MT242320	MT242340	MT242359	Olariaga et al. (2020)
	Radulomyces molaris	ML0499	AY463459	AY586705	_	_	_	-	Larsson et al. (2004)
	Radulomyces	IMG 5985-16	MG050100	MG050110	_	-	-	-	Wang et al. (2018)
	paumanokensis								6 ()

Table 1 List of species, specimens, and GenBank accession number of sequences used in this study. * is shown type material, holotype.

Order/Family	Species name S	Sample no.		References					
·	•	•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	—
	Radulomyces paumanokensis	LE-BIN 4691	OL764917	_	_	_	_	-	Unpublished
	Radulomyces rickii	JK 951007	-	AY586706	_	_	_	-	Larsson et al. (2004)
	Radulomyces rickii	G1066	-	MK278543	-	_	-	-	Varga et al. (2019)
	Radulomyces yunnanensis	CLZhao 1262 *	OR096191	OR449917	OR469068	OR687197	OR729442	-	Present study
	Radulomyces yunnanensis	CLZhao 7364	OR096192	OR449918	OR469069	OR687198	OR729443	-	Present study
	Radulomyces vunnanensis	CLZhao 24040	OR167197	_	_	-	-	-	Present study
	Radulomyces	CLZhao 26656	OR167198	OR449919	-	_	-	_	Present study
	Radulomyces vunnanensis	CLZhao 26685	OR167199	OR449920	_	_	-	-	Present study
	Radulomyces vunnanensis	CLZhao 27046	OR167200	OR449921	_	_	-	-	Present study
	Radulomyces	CLZhao 27069	OR167201	-	-	-	-	-	Present study
	Radulomyces zivishanensis	CLZhao 21127	ON033887	OR449922	OR469070	_	-	OR541903	Present study
	Radulotubus resupinatus	Cui 8383	KU535660	KU535668	_	_	_	_	Zhao et al. (2016a)
	Radulotubus resupinatus	Cui 8462	KU535657	KU535665	_	_	_	_	Zhao et al. $(2016a)$
-/Schizophyllaceae	Schizophyllum fasciatum	CBS 267 60	I 43385	AF261589	_	_	_	_	Nakasone et al. (1996)
Amylocorticiales/ Amylocorticiaceae	Amylocorticium cebennense	HHB-2808	GU187505	GU187561	_	GU187439	GU187770	GU187675	He et al. (2019)
Impletermetateat	Anomoloma albolutescens	CFMR-L 6088	GU187507	GU187563	_	GU187438	GU187768	GU187671	He et al. (2019)
Atheliales /Atheliaceae	Athelia arachnoidea	GB 0087426	LR694192	LR694169	_	_	LR694267	LR694213	He et al. (2019)
	Leptosporomyces raunkiaerii	HHB 7268	GU187528	GU187588	_	GU187471	GU187791	GU187719	Binder et al. (2010)
Auriculariales/ Auriculariaceae	Auricularia heimuer	Dai 13765	KM396793	MH020931	_	MZ753965	KP729317	-	Wu et al. (2014a)
	Heterochaete delicata	TUFC 33717	AB871766	AB871747	_	_	_	_	He et al. (2019)
Boletales/Boletaceae	Boletus edulis	HMJAU4637	JN563894	KF112455	_	KF112586	KF112704	KF112202	Wu et al. (2014b)
	Royoungia reticulata	HKAS 52253	-	KT990592	_	KT990940	KT990427	KT990786	Wu et al. (2016)
Cantharellales/ Hydnacea	Hydnum albomagnum	AFTOL-ID 471	DQ218305	AY700199	_	DQ234570	DQ234553	DQ234568	He et al. (2019)

Order/Family	Family Species name Sample no. GenBank accessions no.						References		
·	-	-	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
	Sistotrema coronilla	AFTOL-ID 618	DQ397337	DQ457641	_	_	_	_	He et al. (2019)
Corticiales/ Corticiaceae	Corticium boreoroseum	MG42	MW805842	MW805816	_	-	-	-	Ghobad-Nejhad et al. (2021)
	Corticium boreoroseum	MG47	MW805846	HM046920	-	_	_	_	Ghobad-Nejhad et al. (2021)
	Corticium canfieldii	ERC-72-11	MW805850	MW805821	-	-	-	-	Ghobad-Nejhad et al. (2021)
	Corticium erikssonii	MG44	MW805843	MW805818	-	-	_	_	Ghobad-Nejhad et al. (2021)
	Corticium lombardiae	MG147	MW805848	-	-	-	_	-	Ghobad-Nejhad et al. (2021)
	Corticium lombardiae	MG148	MW805849	-	-	-	_	-	Ghobad-Nejhad et al. (2021)
	Corticium malagasoroseum	PC 0094401	MW805856	MW805822	-	-	_	-	Ghobad-Nejhad et al. (2021)
	Corticium roseoalbum	CLZhao 13525 *	OR167203	OR449923	_	_	_	_	Present study
	Corticium roseum	MG252	MW805872	MW805836	-	-	_	_	Ghobad-Nejhad et al. (2021)
	Corticium silviae	S. Feusi 05.06.2017	MH520061	MH520061	-	-	_	_	Diederich et al. (2018)
	Corticium thailandicum	MG242	MW805868	MW805831	-	-	_	_	Ghobad-Nejhad et al. (2021)
	Erythricium laetum	MG72	GU590875	GU590878	-	-	_	_	Ghobad-Nejhad et al. (2021)
	Erythricium laetum	MG73	GU590874	GU590879	-	-	_	-	Ghobad-Nejhad et al. (2021)
	Laetisaria fuciformis	CBS:182.49	MH856485	MH868023	_	_	_	_	Vu et al. (2019)
	Laetisaria agaves	RLG-10805	MW805851	_	-	-	_	_	Ghobad-Nejhad et al. (2021)
	Lawreymyces palicei	Palice 2509	AY542864	AY542864	-	-	_	-	Ghobad-Nejhad et al.
	Lawreymyces palicei	Palice 4369	AY542865	AY542865	-	-	_	_	Ghobad-Nejhad et al.
	Marchandiomyces corallinus	JL128-98	AY583327	AY583331	-	_	_	_	DePriest et al. (2005)
	Marchandiomyces lignicola	MYA 299	AY583328	AY583332	_	_	_	-	DePriest et al. (2005)

Order/Family	Species name	Sample no.			References				
·	•	•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	_
	Mycobernardia incrustans	CBS:172.36	MH855759	MH867272	_	_	_	_	Ghobad-Nejhad et al. (2021)
	Mycobernardia incrustans	CBS:173.36	MH855760	MH867273	-	-	-	-	Ghobad-Nejhad et al. (2021)
	Waitea circinata	CBS:472.82	MH861518	MH873265	_	_	_	_	Vu et al. (2019)
	Waitea circinata	299-G-17	MK817577	MN121346	_	_	_	_	Vojvodic et al. (2023)
-/Punctulariaceae	Punctularia strigosozonata	CBS:345.34	MH855559	MH867064	_	-	_	-	Vu et al. (2019)
	Punctulariopsis obducens	MG70	HM046918	HM046933	_	-	_	-	Ghobad-Nejhad et al. (2021)
Geastrales/ Geastraceae	Geastrum dolomiticum	FP 20140223	MT569469	MT569460	_	MT572906	_	MT593361	Finy et al. (2021)
	Sphaerobolus iowensis	ATCC 52850	AY487958	AY439014	AY488008	-	_	AY487984	Geml et al. (2005)
Gloeophyllales/ Gloeophyllaceae	Gloeophyllum sepiarium	Wilcox-3BB	NR119869	NG060630	-	-	HM536109	-	Garcia-Sandoval et al. (2011)
Gomphales/ Gomphaceae	Gomphus matijun	HKAS122604	OL673002	OL672986	-	-	_	-	Liu et al. (2022a)
	Gomphus matijun	HKAS122605	OL673001	OL672985	_	_	_	_	Liu et al. (2022a)
Hymenochaetales/ Chaetoporellaceae	Kneiffiella eucalypticola	LWZ20180515-9	MT319411	MT319143	-	-	_	-	Wang et al. (2021b)
•	Kneiffiella subalutacea	GEL2196	DQ340341	DQ340362	_	_	_	_	Yurchenko et al. (2020a)
-/Hymenochaetaceae	Basidioradulum mayi	LWZ 20180510-18	MN017785	MN017792	ON463756	ON456063	ON456070	-	Wang et al. (2023)
	Basidioradulum radula	LWZ 20201017-62	ON063684	ON063884	ON063747	ON089691	ON100770	ON100713	Wang et al. (2023)
	Coltricia abieticola	Cui 10321	KX364785	KX364804	KY693823	KX364828	KX364876	KY693911	Bian & Dai (2017)
	Coltricia weii	LWZ 20190811- 1b	ON063641	ON063840	ON063709	ON100737	ON100684	ON089689	Wang et al. (2023)
	Coniferiporia qilianensis Coniferiporia sulphurascens	Dai 13320 FP-134848-SP	MT420707 MT420687	MT416471 MT416462	MT386051 MT386065	MT376013 MT376016	_	MT470372 MT470375	Wang et al. (2023) Wang et al. (2023)
	Cvanotrama gypsea	Cui 10372	KT203290	MT319396	MT326567	_	KT210367	_	Wang et al. (2023)
	Cvanotrama rimosa	MG56	GU566010	GU566003	_	_	_	_	Wang et al. (2023)
	Fomitiporia gabonensis	MUCL 47576	GU461971	GU461990	_	_	JO087972	GU461923	Wang et al. (2023)
	Fomitiporia rhampoides	LWZ 20180905-15	ON063643	ON063842	ON063711	ON100739	_	ON089672	Wang et al. (2023)
	Fulvoderma australe	LWZ 20190809- 39b	ON063644	ON063843	ON063712	ON100740	ON100686	_	Wang et al. (2023)
	Fulvoderma scaurum	LWZ 20170816-31	ON063645	ON063844	ON063713	_	_	_	Wang et al. (2023)

Order/Family	Species name	Sample no.				References			
·	-	•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	—
	Fuscoporia ferruginosa	LWZ 20180927-2	_	ON063847	ON063716	ON100743	ON100689	_	Wang et al. (2023)
	Fuscoporia gilva	LWZ 20190814-	ON063648	ON063848	ON063717	ON100744	ON100734	ON089686	Wang et al. (2023)
		19b							
	Hydnoporia corrugata	CLZhao 10344	OM959405	OM967403	-	-	-	-	Unpublished
	Hydnoporia corrugata	HHB-19233	MW740292	-	-	-	-	-	Unpublished
	Hydnoporia diffissa	X3389	MK514611	-	-	-	-	-	Miettinen et al. (2019)
	Hydnoporia diffissa	X2654	MK514598	-	-	-	-	-	Miettinen et al. (2019)
	Hydnoporia gigasetosa	He 1442	KR781016	KR781017	-	-	-	-	Yang et al. (2016)
	Hydnoporia lamellata	Cui 7629	JQ279603	JQ279617	_	_	_	-	He & Dai (2012)
	Hydnoporia lamellata	Dai 10527	JQ279605	-	_	_	_	-	He & Dai (2012)
	Hydnoporia laricicola	Dai 13458	NR166380	NG068765	_	_	_	-	Yang et al. (2016)
	Hydnoporia latesetosa	He 492	JQ716404	JQ716411	_	_	_	_	He & Li (2013)
	Hydnoporia latesetosa	He 502	JQ716405	JQ716410	_	_	_	_	He & Li (2013)
	Hydnoporia lenta	Dai 11046	JQ279616	JQ279628	_	_	_	_	He & Dai (2012)
	Hydnoporia olivacea	FP-102077	OQ539564	_	_	_	_	_	Yu et al. (2023b)
	Hydnoporia pinicola	CLZhao 22505	OR094493	OR449924	OR469071	OR687192	OR729444	OR541904	Present study
	Hydnoporia pinicola	CLZhao 27154	OR094494	OR449925	OR469072	OR898397	OR729445	OR541905	Present study
	Hydnoporia pinicola	CLZhao 27175	OR094495	OR449926	OR469073	OR898398	OR729446	OR541906	Present study
	Hydnoporia pinicola	CLZhao 27180 *	OR094496	OR449927	OR469074	_	_	OR541907	Present study
	Hydnoporia rhododendri	X2641	MK514593	_	_	_	_	_	Miettinen et al. (2019)
	Hydnoporia rhododendri	X2655	MK514599	_	_	_	_	_	Miettinen et al. (2019)
	Hydnoporia rimosa	X2640	MK514592	_	_	_	_	_	Miettinen et al. (2019)
	Hydnoporia rimosa	X2642	MK514594	_	_	_	_	_	Miettinen et al. (2019)
	Hydnoporia subrigidula	He 1123	JQ716402	JQ716408	_	_	_	_	He & Li (2013)
	Hydnoporia subrigidula	He 1157	JQ716403	JQ716409	_	_	_	_	He &Li (2013)
	Hydnoporia tabacina	LWZ 20210924-	ON063651	ON063851	ON063720	ON100747	ON100685	ON089676	Wang et al. (2023)
		26a							-
	Hydnoporia	LWZ 20190814-	ON063652	ON063852	ON063721	ON100748	_	_	Wang et al. (2023)
	tabacinoides	29b							
	Hydnoporia	Cui 10428	JQ279604	JQ279618	_	_	_	_	He & Dai (2012)
	tabacinoides		-	-					
	Hydnoporia yasudae	Dai 19262	OL470309	OL462824	_	_	_	_	Unpublished
	Hydnoporia yasudae	X2665	MK514609	MK514609	_	_	_	_	Miettinen et al. (2019)
	Hydnoporia	CLZhao 5942	OR094497	OR449928	_	_	_	-	Present study
	vunnanensis			-					U U
	Hydnoporia	CLZhao 6123 *	OR094498	OR449929	OR469075	_	OR729447	OR541908	Present study
	yunnanensis								v

Order/Family	Species name	Sample no.		References					
·	•	•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	—
	Hydnoporia	CLZhao 6227	OR094499	OR449930	OR469076	_	OR729448	OR541909	Present study
	yunnanensis Huda an aria	CI 7haa 10906	0004500	OD 440021	OD 460077	OD697102	00720440		Duccont study
	yunnanensis	CLZna0 10896	08094500	UK449931	UK409077	UK08/193	UK/29449	_	Present study
	<i>Hymenochaete</i>	LWZ 20180921-5	ON063653	ON063853	ON063722	ON100749	-	ON089677	Wang et al. (2023)
	Hymenochaete ochromarginata	He 47	KU978861	JQ279666	_	_	_	-	Guan et al. (2023)
	Hymenochaete rubiginosa	He 458	JQ279580	_	_	-	-	-	Guan et al. (2023)
	Hymenochaete rubiginosa	LWZ 20201017-32	ON063655	_	ON063724	ON100751	ON100698	ON089678	Wang et al. (2023)
	Inonotus hispidus Nigrofomes melanoporus	LWZ 20180703-1 JV 1704/39	ON063659 MF629835	ON063858 MF629831	ON063727 -	ON100753 -	ON100692 -	ON089681 -	Wang et al. (2023) Wang et al. (2023)
	Nigrofomes sinomelanoporus	Cui 5277	MF629836	MF629832	-	_	_	-	Wang et al. (2023)
	Nothophellinus andinopatagonicus	MR 10431B	KP347534	KP347529	_	_	_	-	He et al. (2019)
	Ochrosporellus puerensis	Dai 12241	OL583991	OL583985	_	-	-	-	Wang et al. (2023)
	Onnia tomentosa	Cui 10048	MT332141	MT319387	MT326561	_	_	_	Wang et al. (2023)
	Phellinopsis conchata	L-7601	KU139188	KU139257	-	_	KU139315	KU139377	Wang et al. (2023)
	Phellinus piceicola	LWZ 20190921-5	ON063662	ON063862	ON063731	ON100754	ON100695	-	Wang et al. (2023)
	Phylloporia oreophila	LWZ 20190811- 27a	ON063665	ON063865	ON063733	-	ON100694	ON089684	Wang et al. (2023)
	Phylloporia radiata	LWZ 20141122-6	ON063666	ON063866	_	_	_	ON089685	Wang et al. (2023)
	Porodaedalea himalayensis	LWZ 20180903-21	ON063667	ON063867	ON063734	ON100755	-	-	Wang et al. (2023)
	Porodaedalea laricis	LWZ 20190724-9	ON063668	ON063868	ON063735	ON100756	ON100693	_	Wang et al. (2023)
	Sanghuangporus	LWZ 20170821-18	ON063669	ON063869	_	_	_	_	Wang et al. (2023)
	Sanghuangporus weigelae	LWZ 20210623-2a	ON063671	ON063870	ON063736	-	ON100697	ON089687	Wang et al. (2023)
-/Hyphodontiaceae	Hyphodontia arguta	KHL 11938 (GB)	EU118632	EU118633	_	_	_	_	Larsson (2007a)
~1	Hyphodontia pallidula	GEL 2097	DQ340317	DQ340372	_	-	-	_	Guan et al. (2023)
-/Incertae sedis	Rigidoporus corticola	ZRL 20151459	LT716075	KY418899	_	_	KY419038	KY419087	Liu et al. (2022c)

Order/Family	Species name	Sample no.		References					
-	_	-	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
-/Peniophorellaceae	Peniophorella aspersa	TNM F24809	MN062097	MN062142	_	_	_	_	Yurchenko et al. (2020b)
	Peniophorella aspersa	TNM F32708	MN062099	MN062144	-	_	-	-	Yurchenko et al. (2020b)
	Peniophorella capitulata	KHL 8464 (GB)	DQ677491	DQ677491	-	_	-	-	Larsson (2007b)
	Peniophorella cremea	CLZhao 1606	MT955162	-	-	-	-	-	Xu et al. (2020a)
	Peniophorella cremea	CLZhao 1719	MT955163	-	-	-	-	-	Xu et al. (2020a)
	Peniophorella crystallifera	LWZ 20210626-4a	ON063685	ON063885	ON063748	ON100771	-	-	Wang et al. (2023)
	Peniophorella crystallifera	TNM F30331	MN062100	MN062147	-	-	-	-	Yurchenko et al. (2020b)
	Peniophorella daweishanensis	CLZhao 18600 *	OR094501	OR449932	OR469078	-	-	-	Present study
	Peniophorella echinocystis	KHL 6284	DQ677494	DQ681200	_	_	_	_	Larsson (2007b)
	Peniophorella fissurata	CLZhao 9421	MN864260	OM985776	OO706812	_	_	_	Guan et al. (2020)
	Peniophorella fissurata	CLZhao 5848	MN864262	OM985777	00706798	_	_	_	Guan et al. (2020)
	Peniophorella guttulifera	CBS 107303	LT603016	LT603001	-	-	_	LT603027	Kolařík & Vohník (2018)
	Peniophorella guttulifera	NH 12012 (GB)	DQ647501	-	-	-	_	-	Hallenberg et al. (2007)
	Peniophorella odontiiformis	TMI 21347	DQ647496	-	-	-	_	-	Hallenberg et al. (2007)
	Peniophorella odontiiformis	TMI 6824	DQ647500	-	_	_	_	_	Hallenberg et al. (2007)
	Peniophorella olivacea	CLZhao 25896 *	OR094502	OR449933	OR469079	_	OR722813	_	Present study
	Peniophorella pallida	UC 2022887	KP814201	_	_	_	_	_	Rosenthal et al (2017)
	Peniophorella pallida	UC 2022844	KP814208	_	_	_	_	_	Rosenthal et al (2017)
	Peniophorella pertenuis	NH 15115 (GB)	DQ647487	_	_	_	_	_	Hallenberg et al. (2007)
	Peniophorella pertenuis	NH 12429 (GB)	DQ647486	_	_	_	_	_	Hallenberg et al. (2007)
	Peniophorella praetermissa	NH 11192 (GB)	DQ647461	-	-	-	_	-	Hallenberg et al. (2007)
	Peniophorella praetermissa	NH 10986 (GB)	DQ647462	-	-	-	_	-	Hallenberg et al. (2007)
	Peniophorella pubera	LWZ 20210624- 16b	ON063687	ON063887	ON063750	ON100772	ON100715	_	Wang et al. (2023)
	Peniophorella pubera	CBS:464.86	MH861988	MH873680	_	_	_	_	Vu et al. (2019)
	Peniophorella reticulata	TNM F22559	MN062103	MN062151	_	_	_	_	Yurchenko et al. (2020b)
	Peniophorella reticulata	CLZhao 17066	OM985746	OM985783	OO706822	_	_	_	Unpublished

Order/Family	Species name	Sample no.		References					
·		•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	—
	Peniophorella rude	LWZ 20171026-	ON063688	ON063888	ON063751	ON100773	ON100716	ON089692	Wang et al. (2023)
	Peniophorella subpraetermissa	/ LWZ 20190816-	ON063689	ON063889	ON063752	ON100774	ON100717	-	Wang et al. (2023)
	Peniophorella subpraetermissa	Wu 950627	DQ647493	-	-	_	-	-	Hallenberg et al. (2007)
	Peniophorella	CLZhao 4810	MN864263	OM985788	OQ706796	-	_	-	Guan et al. (2020)
	Peniophorella	CLZhao 6137	MN864266	-	OQ706801	_	_	-	Guan et al. (2020)
-/Resiniciaceae	Resinicium austroasianum	LWZ 20191208-11	ON063691	ON063891	ON063753	ON100776	ON100720	ON089694	Wang et al. (2023)
	Resinicium luteosulphureum	LWZ 20210923- 23a	ON063692	ON427362	ON063754	ON100777	ON100719	ON089695	Wang et al. (2023)
-/Schizoporaceae	Basidioradulum radula	NH 9453	AF347105	AF347105	-	_	_	_	Larsson et al. (2004)
	Basiaioraaulum raaula Fasciodontia brasiliansis	KUC 10071 MSK-F 7245a	MW575201	MW 570809 MK 598734	_	_	_	_	Kyu et al. (2021) Vurchenko et al. $(2020a)$
	Fasciodontia bugellensis	KAS-FD 10705a	MK575201 MK575203	MK 598735	_	_	_	_	Yurchenko et al. $(2020a)$
	Fasciodontia Fasciodontia vunnanensis	CLZhao 6280	MK811275	MZ146327	_	-	_	-	Luo & Zhao (2021)
	Lyomyces albonulverulentus	CLZhao 21478	OP730712	OP730724	_	_	_	-	Guan et al. (2023)
	Lyomyces allantosporus	KAS-GEL4933	KY800401	_	_	_	_	_	Yurchenko et al. (2017)
	Lyomyces bambusinus	CLZhao 4831	MN945968	_	_	_	_	_	Chen & Zhao (2020)
	Lyomyces daweishanensis	CLZhao 18344 *	OR094474	OR449934	OR469080	OR898399	OR731372	-	Present study
	Lyomyces elaeidicola	LWZ20180411-20	MT319458	_	_	_	_	-	Wang et al. (2021b)
	Lyomyces fimbriatus	Wu910620-7	MK575209	_	_	_	_	-	Yurchenko et al. (2020a)
	Lyomyces gatesiae	LWZ20180515-3	MT319447	_	_	_	_	-	Wang et al. (2021b)
	Lyomyces griseliniae	KHL 12971 (GB)	DQ873651	_	_	_	_	_	Larsson et al. (2006)
	Lyomyces incanus	CLZhao 22813	OR094480	OR449935	OR469081	_	OR731375	_	Present study
	Lyomyces incanus	CLZhao 22900 *	OR094481	OR449936	OR469082	_	OR898400	_	Present study
	Lyomyces juniperi	FR-0261086	KY081799	_	_	_	_	-	Riebesehl & Langer (2017)
	Lyomyces lincangensis	CLZhao 22966 *	OR094487	OR449937	OR469083	_	-	-	Present study
	Lyomyces luteoalbus	CLZhao 18211	OR094485	OR449938	OR469084	_	_	_	Present study
	Lyomyces luteoalbus	CLZhao 18347 *	OR094486	OR449939	OR469085	OR687199	OR731373	OR541910	Present study

INS ILSU INSU RPB1 RPB2 TEF1 I_yomyces macromys KLZhao S435 KY800399 - - - - - - Warbenko et al. (2020a) I_yomyces noreus CLZhao S435 MZ262537 - - - - Loo et al. (2021c) I_yomyces orientalis CLZhao S435 MZ262535 MZ262521 - - - - Loo et al. (2021c) I_yomyces orientalis CLZhao 27462 OR167768 OR449940 - - - - Present study I_yomyces sinensis CLZhao 27464 OR167770 OR449942 - - - OR722811 Present study I_yomyces wietanamesis TLMTB073 JX175744 - - - - Warbenko et al. (2013) I_yomyces wietanamesis TLMTB073 JX175744 - - - Warbenko et al. (2014) I_yomyces wietanamesis TLMTD073 JX17572 - - - Warbenko et al. (2020) <td< th=""><th>Order/Family</th><th>Species name</th><th>Sample no.</th><th colspan="6">e no. GenBank accessions no.</th><th>References</th></td<>	Order/Family	Species name	Sample no.	e no. GenBank accessions no.						References
Loomyces macrosporus CLZbuo 4516 MN945977 -	·	-	•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
Lyonnyces mascarensis KAS-GEL4833 KY800399 -		Lyomyces macrosporus	CLZhao 4516	MN945977	_	_	_	_	_	Chen & Zhao (2020)
Lyonryces niveus ClZhao 6442 MZ26252 MZ26253 Luo et al. (2021c) Lyonryces orbracadbar CLZhao 27462 OR40325		Lyomyces mascarensis	KAS-GEL4833	KY800399	_	_	_	_	_	Yurchenko et al. (2020a)
Lyomyces ochraceadbas CLZbao 4385 MZ262355 MZ262355 - - - - - Lucot al. (2021c) Lyomyces opiningensis CLZbao 27462 OR167768 OR449940 - - - - Present study Lyomyces sumbuci KAS-JR7 KY800402 KY7953066 - - - Present study Lyomyces simensis CLZhao 27914 OR167709 OR449941 - - OR722810 - Present study Lyomyces vienamensis TNM F0973 NX175044 - - - - - Guan et al. (2021) Xylodon acxitidatus LW220180514-9 MT19474 - - - - - Guan et al. (2021) Xylodon actinuatus Spirin 8775 MT324476 -		Lyomyces niveus	CLZhao 6442	MZ262542	MZ262527	_	_	_	_	Luo et al. (2021c)
Loomyces orientalis GEL3376 DQ34025 - - - - - - - - - - - - - - - - - - Present study Lyomyces sinensis CLZhao 27391 OR167769 OR449940 - - OR722810 - Present study Lyomyces sinensis CLZhao 27461 OR167770 OR449942 - - OR722810 - Present study Lyomyces vietnamersis CLZhao 2463 OP730711 OP730723 - - - - Guada 14. (2021) Kylodon astrocystidiatus LW220180514-9 MT319474 - - - - Wang et al. (2021) Xylodon astrocystidiatus Spirin 8775 MH32476 - - - - Wang et al. (2014) Xylodon dreevisenus Jsirofa AY463428 - - - - Present study Xylodon CLZhao 23088* OR167773 OR449943 - - - - Present study Xylodon CLZhao 23123		Lyomyces ochraceoalbus	CLZhao 4385	MZ262535	MZ262521	_	_	_	_	Luo et al. (2021c)
Loomyces squingensis CLZhao 27402* ORI 07768 OR449940 - - - - - - - Present study Lyomyces sinensis CLZhao 27391* OR167769 OR449941 - - OR722810 - Present study Lyomyces sinensis CLZhao 27464 OR167770 OR449942 - - OR722811 - Present study Lyomyces sinensis CLZhao 27463 OP130711 OP130723 - - - - Wanget al. (2023) Kylodon acystidiatus LW220180514-9 MT1319474 - - - - - Wanget al. (2021b) Xylodon acystidiatus Spira 8775 M1324476 - - - - - Varchenko & Wu (2014) Xylodon dresitidus Spira 8775 M1324476 - - - - - Present study Xylodon dresitidus Spira 8775 M18324476 - - - - Present study Xylodon dresitidus Spira 8775 M183947 OR49943 - - - Present st		Lyomyces orientalis	GEL3376	DQ340325	_	_	_	_	_	Yurchenko et al. (2017)
Lyomiyces sambuici KAS-JR7 KY800402 KY79966 - - - - - Vurchenko et al. (2017) Lyomiyces sinensis CLZhao 27391* OR167769 OR449941 - - OR722810 - Present study Lyomiyces yurenamensis CLZhao 27430 OR167770 OR449941 - - OR722810 - Present study Lyomiyces yurenamensis TLXDao 2463 OR1973071 OP130713 - - - - - Guan et al. (2023) Xylodon acystidiata W220180514-9 MT319474 - - - - - Wang et al. (2021) Xylodon storcystidiata Spiin 8775 MH324476 - - - - - Present study Xylodon treviseus JS17863 AY464328 - - - - Present study Xylodon treviseus JS17863 AY464328 - - - - Resent study Xylodon fissiliaus CLZhao 23088 OR167773 OR449943 - - - - Guan et al. (2024) </td <td></td> <td>Lyomyces qujingensis</td> <td>CLZhao 27462 *</td> <td>OR167768</td> <td>OR449940</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>Present study</td>		Lyomyces qujingensis	CLZhao 27462 *	OR167768	OR449940	_	_	_	_	Present study
Lomixces sinensis CLZhao 27391* OR(6776) OR49941 - - OR722810 - Present study Lyomyces viennaersis CLZhao 27464 OR167770 OR49942 - - OR722811 - Present study Lyomyces viennaersis CLZhao 27464 OP130711 OP130723 - - - - Wurbenko et al. (2013) Lyomyces viennaersis VL20180514-9 MT319474 - - - - Wang et al. (2021b) Xylodon activitations Spirin 8775 MH324476 - - - - - Lorsson et al. (2018) Xylodon brevisteris JS17803 AY463242 - - - - - - - - - - - Present study Xylodon brevistations Strin 8775 MH32442 - - - - - Present study Xylodon visitidatus FR-0249200 MH880195 MH84943 - - - - Riebeschl et al.		Lyomyces sambuci	KAS-JR7	KY800402	KY795966	_	_	_	_	Yurchenko et al. (2017)
Lowryces sinensis CLZhao 27464 OR (167770 OR 449942 - - - - Present study Lyomyces vietnamensis TNM P9073 JX175044 - - - - - - Guan et al. (2023) Xylodon acystidiatus UWZ20180514-9 MT319474 - - - - - Wang et al. (2021) Xylodon acystidiatus VWZ20180514-9 MT319474 - - - - - Wang et al. (2021) Xylodon attemuatus Spirin 8775 MT324476 - - - - - Present study Xylodon therwisetus J17863 AY46328 - - - - Present study Xylodon CLZhao 23028 OR167774 OR449943 - - - - Present study Kylodon CLZhao 273123 OR167774 OR449943 - - - - Present study Kylodon Mtssinis CLZhao 18740 OP730717 OP73		Lyomyces sinensis	CLZhao 27391 *	OR167769	OR449941	_	_	OR722810	_	Present study
Lyomyces vietnamensis Lyomyces yunnanensis Lyomyces yunnanensis Vietnamensis TNM F9073 CLZhao 2463 JX175044 - - - - - Guan et al. (2013) Lyomyces yunnanensis Vietnamensis CLZhao 2463 OP730713 - - - - Guan et al. (2023) Kylodon astrocystidiatus Wu 2211871 JN129972 - - - - - Wag et al. (2021b) Kylodon astrocystidiatus Spirin 8775 MH324476 - - - - - Larsson et al. (2014) Kylodon brevisetus JS17863 AY463428 - - - - - Larsson et al. (2004) Kylodon CLZhao 23088* OR16777 OR449943 - - - - Present study bamburesupinus - - - - - Riebesehl et al. (2019) Kylodon fissilius CLZhao 18740 OR10717 OR49944 - - - - Riebesehl et al. (2019) Kylodon fissilius CLZhao 18740 OR092011 OR49945 - - - - - <td></td> <td>Lyomyces sinensis</td> <td>CLZhao 27464</td> <td>OR167770</td> <td>OR449942</td> <td>_</td> <td>_</td> <td>OR722811</td> <td>_</td> <td>Present study</td>		Lyomyces sinensis	CLZhao 27464	OR167770	OR449942	_	_	OR722811	_	Present study
Lyonyces yunnanensis CLZhao 2463 OP730711 OP730723 -		Lyomyces vietnamensis	TNM F9073	JX175044	_	_	_	_	_	Yurchenko et al. (2013)
Żyłodon acystidiatus LWZ20180514-9 MT319474 - <td></td> <td>Lyomyces yunnanensis</td> <td>CLZhao 2463</td> <td>OP730711</td> <td>OP730723</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>Guan et al. (2023)</td>		Lyomyces yunnanensis	CLZhao 2463	OP730711	OP730723	_	_	_	_	Guan et al. (2023)
Xylodon astrocystidiata Wu 9211-71 JN129972 - <td></td> <td>Xvlodon acvstidiatus</td> <td>LWZ20180514-9</td> <td>MT319474</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>Wang et al. (2021b)</td>		Xvlodon acvstidiatus	LWZ20180514-9	MT319474	_	_	_	_	_	Wang et al. (2021b)
Xylodon attenuatus Spirin 8775 MH324476 -		Xylodon astrocystidiata	Wu 9211-71	JN129972	_	_	_	_	_	Yurchenko & Wu (2014)
Xylodon JS17863 AY463428 -		Xvlodon attenuatus	Spirin 8775	MH324476	_	_	_	_	_	Viner et al. (2018)
Xylodon bamburesupinusCLZhao 23088 *OR167773OR449943Present studyXylodon bamburesupinusCLZhao 23123OR167774OR449944Present studyXylodon cystidiatus Xylodon daweishanensisFR-0249200MH880195MH884896Riebeschl et al. (2019)Xylodon fissilius Xylodon fissiliusCLZhao 18446OP730717OP730725Guan et al. (2023)Xylodon fissiliusCLZhao 18740 *OR096211OR449945OR469086Riebeschl et al. (2019)Xylodon fissiliusCLZhao 18740 *OR096212Present studyXylodon fissiliusCLZhao 18750MZ663804MZ663813Guan et al. (2021a)Xylodon fissiliusCLZhao 18750OR096203Guan et al. (2021a)Xylodon fissiliusCLZhao 18759MZ663804MZ663813Guan et al. (2023)Kylodon hydnoidusCLZhao 18105OR096206Xylodon hydnoidusCLZhao 18239OR096205<		Xvlodon brevisetus	JS17863	AY463428	_	_	_	_	_	Larsson et al. (2004)
bamburesupinus XylodonCLZhao 23123OR167774OR449944Present studybamburesupinus Xylodon cystidiatusFR-0249200MH880195MH884896Riebeschl et al. (2019)Xylodon cystidiatusFR-0249200MH880195MH884896Guan et al. (2023)Xylodon daweishanensisCLZhao 18446OP730717OP730725Guan et al. (2023)Xylodon filicinusMSK-F 12869MH880199NG067836Riebeschl et al. (2019)Xylodon fissiliusCLZhao 18750OR096212Present studyXylodon fissiliusCLZhao 8375MZ663804MZ663813Luo et al. (2021a)Xylodon hydnoidusCLZhao 17991 *OR09203-OR469087Present studyXylodon hydnoidusCLZhao 18105OR096206Present studyXylodon hydnoidusCLZhao 18238OR096204OR449946Present studyXylodon hydnoidusCLZhao 18238OR096205Present studyXylodon hydnoidusCLZhao 18238OR096205Riebeschl et al. (2019)Xylodon hydnoidusCLZhao 18238OR096205Rie		Xvlodon	CLZhao 23088 *	OR167773	OR449943	_	_	_	_	Present study
XylodonCLZhao 23123OR167774OR449944Present studybamburesupinusFR-0249200MH880195MH884896Riebeschl et al. (2019)Xylodon daveishanensisCLZhao 18446OP730717OP730725Guan et al. (2023)Xylodon filscillusMSK-F 12869MH880199NG067836Riebeschl et al. (2019)Xylodon filscillusCLZhao 18740*OR096211OR449945OR469086-OR722809-Present studyXylodon filscillusCLZhao 18750OR096212Present studyXylodon gossypinusCLZhao 18750OR096212Luo et al. (2021a)Xylodon dissiliusCLZhao 18750OR096212Cuan et al. (2021a)Xylodon fissiliusCLZhao 18750OR096201Guan et al. (2021a)Xylodon hydnoidusCLZhao 17991*OR096203Present studyXylodon hydnoidusCLZhao 18105OR096206Present studyXylodon hydnoidusCLZhao 18238OR096205Present studyXylodon hydnoidusCLZhao 18239OR096205		bamburesupinus								
bamburesupinusXylodon cystidiatusFR-0249200MH880195MH884896Riebeschl et al. (2019)Xylodon daweishanenisCLZhao 18446OP730717OP730725Guan et al. (2023)Xylodon filicinusMSK-F 12869MH880199NG067836Riebeschl et al. (2019)Xylodon filicinusCLZhao 18750OR096211OR449945OR469086-OR722809-Present studyXylodon fissiliusCLZhao 18750OR096212Present studyXylodon gossypinusCLZhao 8375MZ663804MZ663813Luo et al. (2021a)Xylodon hydnoidusCLZhao 18750OR096203-OR469087Present studyXylodon hydnoidusCLZhao 18105OR096203-OR469087Present studyXylodon hydnoidusCLZhao 18238OR096205Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hydnoidusCLZhao 18239OR096205Riebeschl et al. (2019)Xylodon hydnoidusCLZhao 18238OR096205Riebeschl et al. (2019)Xylodon hydnoidusCLZhao 18238OR096205 <t< td=""><td></td><td>Xvlodon</td><td>CLZhao 23123</td><td>OR167774</td><td>OR449944</td><td>_</td><td>_</td><td>_</td><td>_</td><td>Present study</td></t<>		Xvlodon	CLZhao 23123	OR167774	OR449944	_	_	_	_	Present study
Xylodon cystidiatus FR-0249200 MH880195 MH884896 - - - - Riebesehl et al. (2019) Xylodon daweishanensis CLZhao 18446 OP730717 OP730725 - - - - Guan et al. (2023) Xylodon filsciluus MSK-F 12869 MH880199 NG067836 - - - - Riebesehl et al. (2019) Xylodon filsciluus CLZhao 18740 * OR090211 OR449945 OR469086 - OR722809 - Present study Xylodon fissilius CLZhao 18750 OR096212 - - - - - Present study Xylodon gosspipius CLZhao 8375 MZ663804 MZ663813 - - - - Guan et al. (2021a) Xylodon Wei 17-314 MT731753 - - - - - Present study Xylodon hydnoidus CLZhao 18105 OR096206 - - - - Present study Xylodon hydnoidus CLZhao 18238 OR096205 - - - - Present study Xylodon hyd		bamburesupinus								
Xylodon daweishanensis CLZhao 18446 OP730717 OP730725 - - - - Guan et al. (2023) Xylodon filicinus MSK-F 12869 MH880199 NG067836 - - - - Riebesehl et al. (2019) Xylodon filicinus MSK-F 12869 MH880199 NG067836 - - - - Riebesehl et al. (2019) Xylodon filicinus CLZhao 18740 OR096211 OR449945 OR469086 - OR722809 - Present study Xylodon filicinus CLZhao 18750 MZ663804 MZ663813 - - - - Present study Xylodon wei 17-314 MT731753 - - - - - Guan et al. (2023) heterocystidiatus K K - - - - - - Present study Xylodon hydnoidus CLZhao 17991 * OR096206 - - - - Present study Xylodon hydnoidus CLZhao 18238 OR096205 - - - - Present study Xylodon hydnoidu		Xvlodon cvstidiatus	FR-0249200	MH880195	MH884896	_	_	_	_	Riebesehl et al. (2019)
Xylodon filicinus Xylodon fissiliusMSK-F 12869 CLZhao 18740 *MH880199 OR096211NG067836 OR449945Riebeschl et al. (2019)Xylodon fissiliusCLZhao 18750 Xylodon gossypinusOR096212 CLZhao 8375Present studyXylodon gossypinus Xylodon hydnoidusCLZhao 18750 CLZhao 17991 *OR096212 MT731753Present studyXylodon hydnoidus Xylodon hydnoidusCLZhao 17991 *OR096203 OR096206Riebeschl et al. (2023)Xylodon hydnoidus Xylodon hydnoidusCLZhao 18105 CLZhao 18238OR096203 OR096206-OR469087 Present studyXylodon hydnoidus Xylodon hydnoidus CLZhao 18238OR096203 OR096206Present studyXylodon hydnoidus Xylodon hydnoidus CLZhao 18238OR096206 OR096205Present studyXylodon hydnoidus Xylodon hydnoidus Xylodon hydnoidus CLZhao 18239OR096205 OR096205Present studyXylodon hydnoidus Xylodon hydnoidus Xylodon hydnoidus CLAna 18238OR096205 OR096205Present studyXylodon hydnoidus Xylodon hydnoidus Xylodon hydnoidus CLAna 18238OR096205 OR096205Present study		Xvlodon daweishanensis	CLZhao 18446	OP730717	OP730725	_	_	_	_	Guan et al. (2023)
Xylodon fissiliusCLZhao 18740 *OR096211OR449945OR469086-OR722809-Present studyXylodon fissiliusCLZhao 18750OR096212Present studyXylodon gossypinusCLZhao 8375MZ663804MZ663813Present studyXylodonWei 17-314MT731753Guan et al. (2021a)heterocystidiatusXylodon hydnoidusCLZhao 17991 *OR096203-OR469087Present studyXylodon hydnoidusCLZhao 18105OR096206Present studyXylodon hydnoidusCLZhao 18105OR096206Present studyXylodon hydnoidusCLZhao 18238OR096204OR449946Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hyphodontinusKAS-GEL9222MH880205MH884903Riebeschl et al. (2019)Xylodon lenisWu890714-3KY081802Riebeschl et al. (2019)Xylodon nacrosporusCLZhao 10226MZ663817Riebeschl et al. (2021a)Xylodon nacrosporusCLZhao 10226MZ663809MZ663817Luo et al. (2021a) <td></td> <td>Xvlodon filicinus</td> <td>MSK-F 12869</td> <td>MH880199</td> <td>NG067836</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>Riebesehl et al. (2019)</td>		Xvlodon filicinus	MSK-F 12869	MH880199	NG067836	_	_	_	_	Riebesehl et al. (2019)
Xylodon fissiliusCLZhao 18750OR096212Present studyXylodon gossypinusCLZhao 8375MZ663804MZ663813Luo et al. (2021a)XylodonWei 17-314MT731753Guan et al. (2023)heterocystidiatusXylodon hydnoidusCLZhao 17991 *OR096203-OR469087Present studyXylodon hydnoidusCLZhao 18105OR096206Present studyXylodon hydnoidusCLZhao 18238OR096205Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hyphodontinusKAS-GEL9222MH880205MH884903Present studyXylodon hyphodontinusKAS-GEL9225MH880198Riebeschl et al. (2019)Xylodon lenisWu890714-3KY081802Riebeschl & Langer (2017)Xylodon macrosporusCLZhao 10226MZ663809MZ663817Luo et al. (2021a)		Xvlodon fissilius	CLZhao 18740 *	OR096211	OR449945	OR469086	_	OR722809	_	Present study
Xylodon gossypinus XylodonCLZhao 8375MZ663804 MT731753MZ663813Lue et al. (2021a) Guan et al. (2023)heterocystidiatusMT731753CLD et al. (2023)NumberXylodon hydnoidusCLZhao 17991 *OR096203Present studyXylodon hydnoidusCLZhao 18105OR096206Present studyXylodon hydnoidusCLZhao 18238OR096204OR449946Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hydnoidusKAS-GEL9222MH880205MH884903Riebeschl et al. (2019)Xylodon lenisWu890714-3KY081802 <th< td=""><td></td><td>Xvlodon fissilius</td><td>CLZhao 18750</td><td>OR096212</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>Present study</td></th<>		Xvlodon fissilius	CLZhao 18750	OR096212	_	_	_	_	_	Present study
Xylodon heterocystidiatusWei 17-314MT731753Guan et al. (2023)heterocystidiatusXylodon hydnoidusCLZhao 17991 *OR096203-OR469087Present studyXylodon hydnoidusCLZhao 18105OR096206Present studyXylodon hydnoidusCLZhao 18238OR096204OR449946Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hyphodontinusKAS-GEL9222MH880205MH884903Riebeschl et al. (2019)Xylodon kunmingensisTUB-FO 42565MH880198Riebeschl et al. (2019)Xylodon lenisWu890714-3KY081802Riebeschl & Langer (2017)Xylodon macrosporusCLZhao 10226MZ663807MZ663817Luo et al. (2021a)		Xylodon gossypinus	CLZhao 8375	MZ663804	MZ663813	_	_	_	_	Luo et al. $(2021a)$
heterocystidiatusXylodon hydnoidusCLZhao 17991 *OR096203-OR469087Present studyXylodon hydnoidusCLZhao 18105OR096206Present studyXylodon hydnoidusCLZhao 18238OR096204OR449946Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hydnoidusKAS-GEL9222MH880205MH884903Riebesehl et al. (2019)Xylodon kunningensisTUB-FO 42565MH880198Riebesehl et al. (2019)Xylodon lenisWu890714-3KY081802Riebesehl & Langer (2017)Xylodon macrosporusCLZhao 10226MZ663809MZ663817Luo et al. (2021a)		Xvlodon	Wei 17-314	MT731753	_	_	_	_	_	Guan et al. (2023)
Xylodon hydnoidusCLZhao 17991 *OR096203-OR469087Present studyXylodon hydnoidusCLZhao 18105OR096206Present studyXylodon hydnoidusCLZhao 18238OR096204OR449946Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hyphodontinusKAS-GEL9222MH880205MH884903Riebeschl et al. (2019)Xylodon kunmingensisTUB-FO 42565MH880198Riebeschl et al. (2019)Xylodon lenisWu890714-3KY081802Riebeschl & Langer (2017)Xylodon macrosporusCLZhao 10226MZ663809MZ663817Luo et al. (2021a)		heterocystidiatus								
Xylodon hydnoidusCLZhao 18105OR096206Present studyXylodon hydnoidusCLZhao 18238OR096204OR449946Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hyphodontinusKAS-GEL9222MH880205MH884903Riebesehl et al. (2019)Xylodon kunmingensisTUB-FO 42565MH880198Riebesehl et al. (2019)Xylodon lenisWu890714-3KY081802Riebesehl et al. (2019)Xylodon macrosporusCLZhao 10226MZ663809MZ663817Luo et al. (2021a)		Xvlodon hvdnoidus	CLZhao 17991 *	OR096203	_	OR469087	_	_	_	Present study
Xylodon hydnoidusCLZhao 18238OR096204OR449946Present studyXylodon hydnoidusCLZhao 18239OR096205Present studyXylodon hyphodontinusKAS-GEL9222MH880205MH884903Present studyXylodon kunmingensisTUB-FO 42565MH880198Riebesehl et al. (2019)Xylodon lenisWu890714-3KY081802Riebesehl & LangerXylodon macrosporusCLZhao 10226MZ663809MZ663817Luo et al. (2021a)		Xylodon hydnoidus	CLZhao 18105	OR096206	_	_	_	_	_	Present study
Xylodon hydnoidus Xylodon hyphodontinusCLZhao 18239 KAS-GEL9222OR096205 MH880205Present studyXylodon hyphodontinus Xylodon kunmingensis Xylodon lenisKAS-GEL9222MH880205MH884903 MH880198Riebeschl et al. (2019)Xylodon lenisWu890714-3KY081802Riebeschl et al. (2019)Xylodon macrosporusCLZhao 10226MZ663809MZ663817Luo et al. (2021a)Luo et al. (2021a)		Xylodon hydnoidus	CLZhao 18238	OR096204	OR449946	_	_	_	_	Present study
Xylodon hyphodontinus Xylodon kunmingensis Xylodon lenisKAS-GEL9222 TUB-FO 42565 Wu890714-3MH880205 MH880198 KY081802MH884903 Riebeschl et al. (2019)Xylodon lenisWu890714-3KY081802 Wu890714-3Riebeschl et al. (2019)Xylodon macrosporusCLZhao 10226MZ663809MZ663817 MZ663817Luo et al. (2021a)		Xylodon hydnoidus	CLZhao 18239	OR096205	_	_	_	_	_	Present study
Xylodon kunmingensis Xylodon lenisTUB-FO 42565 Wu890714-3MH800205 MH880198 KY081802Riebeschl et al. (2019)Xylodon lenisWu890714-3KY081802 Wu890714-3Riebeschl et al. (2019)Xylodon macrosporusCLZhao 10226MZ663809MZ663817 MZ663817Luo et al. (2021a)		Xylodon hyphodontinus	KAS-GEL 9222	MH880205	MH884903	_	_	_	_	Riebeschl et al. (2019)
Xylodon hammingensisFOB TO 12505MillocorpoMillocorpoMillocorpoXylodon lenisWu890714-3KY081802Riebesehl & LangerXylodon macrosporusCLZhao 10226MZ663809MZ663817Luo et al. (2021a)Uber to the second		Xylodon kunmingensis	TUB-FO 42565	MH880198	_	_	_	_	_	Riebeschl et al. (2019)
Xylodon nacrosporusCLZhao 10226MZ663809MZ663817Luo et al. (2021a)United to the second contract of the second contract o		Xylodon lenis	Wu890714-3	KY081802	_	_	_	_	_	Riebeschl & Langer
<i>Xylodon macrosporus</i> CLZhao 10226 MZ663809 MZ663817 – – – – – Luo et al. (2021a)				111001002						(2017)
		Xylodon macrosporus	CLZhao 10226	MZ663809	MZ663817	_	_	_	_	Luo et al. $(2021a)$
Xylodon nesporii LWZ20180921-35 MT319655 MT319238 – – – – – – – – Wang et al. (2021b)		Xvlodon nesporii	LWZ20180921-35	MT319655	MT319238	_	_	_	_	Wang et al. $(2021h)$

Image: constraint of the image	t al. (2000) study
Xylodon nothofagi XylodonICMP 13842AF145583Paulus of Paulus of OR469088Xylodon 	et al. (2000) study
Xylodon olivaceobubalinus XylodonCLZhao 25164OR167771OR449947OR469088PresentXylodon olivaceobubalinus 	study
olivaceobubalinus XylodonCLZhao 25174*OR167772OR449948OR469089OR687194OR722812-Presentolivaceobubalinus Vylodon pingbianensis Xylodon pseudolanatus Xylodon puerensisCLZhao 19029*OR096208OR449949OR469090PresentXylodon pseudolanatus Xylodon nuerensisCLZhao 8142OP730720OP730728Guan etXylodon traivanianusCBS: 125875MH864080Que t atXylodon troipcusCLZhao 3351OL619261OL619269Luo et atXylodon venshanensisCLZhao 15729OM338097OM338104Luo et atXylodon vinpingensisCLZhao 15729OM338097OM338104Luo et atXylodon vinpingensisCLZhao 15729OM338097OM36544Luo et atXylodon vinpingensisCLZhao 15729OM338097OM36544Luo et atXylodon vinpingensisCLZhao 15729OM63694ON063757ON100779ON100723ON089696Wang et/SkvortzoviaLWZ 2021017-55MW414514MW414460LarssonSkvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648LarssonSkvortzovia furfurellaKHL 10180DQ873649DQ873649 </td <td></td>	
Xylodon olivaceobubalinusCLZhao 25174*OR167772OR449948OR469089OR667194OR722812-PresentXylodon pingbianensisCLZhao 19029*OR096208OR449949OR469090PresentXylodon pingbianensisCLZhao 19029*MH880220Vine etXylodon pseudolanatusCFMR FP-15092MH880220Quan etXylodon puerensisCLZhao 8142OP730720OP730728Quan etXylodon taiwanianusCBS:125875MH864080Qu et alXylodon tropicusCLZhao 3351OL619261OL619269Luo et aXylodon xinpingensisCLZhao 1729OM338097OM338104Luo et aXylodon xinpingensisCLZhao 11224MW394662MW394654Wang et/SkvortzoviaLWZ 20210918-ON63699ON63891ON63757ON100779ON100729ON89696Wang et/SkvortzoviaLWZ 2021017-55MW41451MW414460LarssonSkvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648Dong etSkvortzovia furfurellaMAB 12-286MP248259Dong et	
olivaceobubalinusVidoon pingbianensisCLZhao 19029*OR096208OR449949OR469090PresentXylodon pseudolanatusCFMR FP-150922MH880220<	study
Xylodon pingbianensis Xylodon pseudolanatusCLZhao 19029* CFMR FP-150922OR096208 MH880220OR469090 PPresentXylodon pseudolanatus Xylodon puerensisCLZhao 8142OP730720OP730728Guan etXylodon taiwanianusCBS:125875MH864080Qu et alXylodon tropicusCLZhao 3351OL619261OL619269Qu et alXylodon tropicusCLZhao 15729OM338097OM338104Luo et aXylodon sinpingensisCLZhao 11224MW394662MW394654Wang etXylodon sinpingensisCLZhao 11224MW394662MW394654Wang etXylodon sinpingensisLWZ20180510-5MT319639Wang etXskvortzoviaLWZ 2021017-55MW414514MW414460Yu et aldabieshanensis15bYu et alSkvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648LarssonSkvortzovia furfurellaKHL 10180DQ873649DQ873649Dong etSkvortzovia furfurellaKHL 10180DQ873649DQ873649Dong et	
Xylodon pseudolanatusCFMR FP-150922MH880220Viner etXylodon puerensisCLZhao 8142OP730720OP730728Guan etXylodon taiwanianusCBS:125875MH864080Qu et alXylodon tropicusCLZhao 3351OL619261OL619269Qu et alXylodon wenshanensisCLZhao 15729OM338097OM338104Luo et aXylodon xinpingensisCLZhao 15124MW394662MW394654Luo et aXylodon yaraensisLWZ 20210918-ON63694ON063894ON063757ON100779ON100723ON089696Wang et/SkvortzoviaLWZ 20201017-55MW414514MW414460Yu et aldabieshanensis15bSkvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648LarssonSkvortzovia furfuraleKHL 10180DQ873649DQ873649Dong etSkvortzovia furfurellaMAR 12-286MH248259Dong et	study
Xylodon puerensisCLZhao 8142OP730720OP730728Guan etXylodon taiwanianusCBS:125875MH864080Vu et alXylodon tropicusCLZhao 3351OL619261OL619269Qu et alXylodon wenshanensisCLZhao 15729OM338097OM338104Luo et alXylodon xinpingensisCLZhao 11224MW394662MW394654Luo et alXylodon yarraensisLWZ20180510-5MT319639Wang et/SkvortzoviaLWZ 20210918-ON063694ON063894ON063757ON100779ON100723ON089696Wang etdabieshanensis15bYu et aldabieshanensisUZ 20201017-55MW414514MW414460LarssonSkvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648LarssonSkvortzovia furfurellaKHL 10180DQ873649DQ873649Dong etSkvortzovia furfurellaMAR 12-286MH248259Dong et	al. (2018)
Xylodon taiwanianusCBS:125875MH864080Vu et alXylodon tropicusCLZhao 3351OL619261OL619269Qu et alXylodon wenshanensisCLZhao 15729OM338097OM338104Luo et alXylodon xinpingensisCLZhao 11224MW394662MW394654Luo et alXylodon yarraensisLWZ20180510-5MT319639Wang etSkvortzoviaLWZ 20210918-ON063694ON063894ON063757ON100779ON100723ON089696Wang etdabieshanensis15bYu et aldabieshanensis15bYu et alSkvortzoviaLWZ 20201017-55MW414514MW414460Yu et aldabieshanensis15bLurssonSkvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648Dong etSkvortzovia furfurellaKHL 10180DQ873649DQ873649Yu et alSkvortzovia furfurellaKHL 10180DQ873649DQ873649Yu et alDong et	al. (2023)
Xylodon tropicusCLZhao 3351OL619261OL619269Qu et alXylodon wenshanensisCLZhao 15729OM338097OM338104Luo et alXylodon xinpingensisCLZhao 11224MW394662MW394654Luo et alXylodon yaraensisLWZ20180510-5MT319639Wang etSkvortzoviaLWZ 20210918-ON063694ON063894ON063757ON100779ON100723ON089696Wang etdabieshanensis15bYu et aldabieshanensis15bYu et alSkvortzoviaLWZ 20201017-55MW414514MW414460Yu et alSkvortzoviaLWZ 20201017-55MW414514MW414460LurssonSkvortzoviaLWZ 20201017-55MW414514MW414460LurssonSkvortzoviaLWZ 20201017-55MW414514MW414460LarssonSkvortzoviaLWZ 20203081KP814421Dong etSkvortzoviaGLI JuffuraceaUC 2023081KP814421Dong etSkvortzoviaGLI JuffurellaKHL 10180DQ873649DQ873649Dong etSkvortzoviaMA	. (2019)
Xylodon wenshanensisCLZhao 15729OM338097OM338104Luo et aXylodon xinpingensisCLZhao 11224MW394662MW394654Luo et aXylodon yarraensisLWZ20180510-5MT319639Wang etSkvortzoviaLWZ 20210918-ON063694ON063894ON063757ON100779ON100723ON089696Wang etdabieshanensis15bYu et aldabieshanensis15bYu et alSkvortzoviaLWZ 20201017-55MW414514MW414460LurssonSkvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648Dong etSkvortzovia furfuraceaKHL 10180DQ873649DQ873649Dong etSkvortzovia furfurellaKHL 10180DQ873649DQ873649Dong etSkvortzovia furfurellaMAR 12-286MH248259Dong et	. (2022)
Xylodon xinpingensis Xylodon yarraensisCLZhao 11224 LWZ20180510-5MW394662 MT319639MW394654 Luo et a'Skvortzovia dabieshanensisLWZ 20210918- 15bON063694ON063894ON063757ON100779ON100723ON089696Wang etSkvortzovia dabieshanensis15bLWZ 20201017-55MW414514MW414460Yu et alSkvortzovia furfuraceaLWZ 20201017-55MW414514MW414460LurssonSkvortzovia furfuracea Skvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648LarssonSkvortzovia furfuracea Skvortzovia furfuralaKHL 10180DQ873649DQ873649Dong etSkvortzovia furfurellaMAR 12-286MH248259Dong et	1. (2022)
Xylodon yarraensisLWZ20180510-5MT319639Wang et/SkvortzoviaLWZ 20210918-ON063694ON063894ON063757ON100779ON100723ON089696Wang etdabieshanensis15bSkvortzoviaLWZ 20201017-55MW414514MW414460Yu et aldabieshanensisSkvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648LarssonSkvortzovia furfuraceaUC 2023081KP814421Dong etSkvortzovia furfurellaKHL 10180DQ873649DQ873649Yu et alSkvortzovia furfurellaKHL 10180DQ873649DQ873649Dong etSkvortzovia furfurellaMAR 12-286MH248259Dong et	1. (2022)
/Skvortzoviaceae Skvortzovia LWZ 20210918- ON063694 ON063894 ON063757 ON100779 ON100723 ON089696 Wang et al albert Skvortzovia LWZ 20201017-55 MW414514 MW414460 - - - - Yu et al albert Skvortzovia LWZ 20201017-55 MW414514 MW414460 - - - - Yu et al albert Skvortzovia furfuracea KHL 11738 (GB) DQ873648 DQ873648 - - - Larsson Skvortzovia furfuracea UC 2023081 KP814421 - - - Dong et Skvortzovia furfurella KHL 10180 DQ873649 DQ873649 - - - Yu et al Dong et Skvortzovia furfurella Skvortzovia furfurella MAR 12-286 MH248259 - - - - - Dong et Skvortzovia furfurella	t al. (2021b)
dabieshanensis15bSkvortzoviaLWZ 20201017-55MW414514MW414460Yu et aldabieshanensisSkvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648LarssonSkvortzovia furfuraceaUC 2023081KP814421Dong etSkvortzovia furfurellaKHL 10180DQ873649DQ873649Yu et alSkvortzovia furfurellaMAR 12-286MH248259Dong et	t al. (2023)
SkvortzoviaLWZ 20201017-55MW414514MW414460Yu et aldabieshanensisSkvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648LarssonSkvortzovia furfuraceaUC 2023081KP814421Dong etSkvortzovia furfurellaKHL 10180DQ873649DQ873649Yu et alSkvortzovia furfurellaMAR 12-286MH248259Dong et	
dabieshanensisInterferenceInterferenceInterferenceInterferenceSkvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648LarssonSkvortzovia furfuraceaUC 2023081KP814421Dong etSkvortzovia furfurellaKHL 10180DQ873649DQ873649Yu et alSkvortzovia furfurellaMAR 12-286MH248259Dong et	(2021)
Skvortzovia furfuraceaKHL 11738 (GB)DQ873648DQ873648LarssonSkvortzovia furfuraceaUC 2023081KP814421Dong etSkvortzovia furfurellaKHL 10180DQ873649DQ873649Yu et alSkvortzovia furfurellaMAR 12-286MH248259Dong et	(=0=1)
Skvortzovia furfuraceaUC 2023081KP814421Dong etSkvortzovia furfurellaKHL 10180DQ873649DQ873649Yu et alSkvortzovia furfurellaMAR 12-286MH248259Dong et	et al. (2006
Skvortzovia furfurella KHL 10180 DQ873649 DQ873649 Yu et al Skvortzovia furfurella MAR 12-286 MH248259 Dong et	al (2021)
Skvortzovia furfurella MAR 12-286 MH248259 – – – – – – – Dong et	(2021)
	al (2021)
Skyotzovja georgica KHL 12019 (GB) DO873645 DO873645 – – – – Larsson	et al. (2021)
Skvortzovia jacana CLZhao 16338 * OR096179 OR449950 OR469091 – OR731374 – Present	study
Skvortzovia incana CL7hao 16474 OR096180 Present	study
Skvortzovia meridionalis CFMR 4210 KX065952 Dong et	al (2021)
Skvortzovia ninicola I WZ 20210623- ON063695 ON063695 ON063758 ON100780 ON100724 – Wang et	$t_{al} (2023)$
18h	al. (2025)
Skyartzovia ailianensis IWZ 20180904-20 ON063693 ON063693 ON063756 ON100778 ON100722 – Wang e	tal (2023)
Skvortzovia gilianensis IWZ 20180904-18 MW414519 MW414465	(2021)
Skyortzovia yunnanensis CI Zhao 16084 MW472754 MW473473 $ON063759 = ON100725 ON080607 Wang et$	(2021)
Skyortzovia yunnanensis CLZhao 1600+ $WW472755$ $WW473474 = -$ OH005757 - OH00725 OH009097 Wally C	al (2023)
Tubulicrinaceae Tubulicrinis accedens ACD0414 OI 756001 OI 742444 – – – – – – – – Unpublic	an. (2021) shed
$\frac{1}{1} \frac{1}{1} \frac{1}$	t_{a1} (2016)
Tubulicrinis borgalis DK14.03 OIA36811 Unpublic	shed
Tubulicrinis colorbaix = LWZ 20210010 1b ON062704 ON062004 ON062766 ON100722 Work and a second sec	silcu
Tubulicrinis Culoffitz LWZ 20210919-10 ON005704 ON005904 ON005700 – ON100755 – Wang e	. al. (2023) shad
$\frac{1}{1}$	SHCU

Order/Family	Species name Sai	Sample no.			References				
•	•	-	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	_
	Tubulicrinis glebulosus	LWZ 20180903-13	ON063705	_	_	ON100785	_	ON089698	Wang et al. (2023)
	Tubulicrinis globisporus	KHL 12133 (GB)	DQ873655	DQ873655	-	_	_	_	Larsson et al. (2006)
	Tubulicrinis gracillimus	PDD 95851	HQ533047		_	_	_	_	Unpublished
	Tubulicrinis hirtellus	KHL 11717 (GB)	DQ873657	DQ873657	-	_	_	_	Larsson et al. (2006)
	Tubulicrinis inornatus	KHL 11763 (GB)	DQ873659	DQ873659	_	_	_	_	Larsson et al. (2006)
	Tubulicrinis	GG-MAR12-206	KU659609	_	_	_	_	_	Gruhn et al. (2016)
	martinicensis								
	Tubulicrinis pini	CLZhao 3679	-	OR449951	OR469092	_	_	_	Present study
	Tubulicrinis pini	CLZhao 6881 *	OR096210	OR449952	_	_	_	OR541911	Present study
	Tubulicrinis subulatus	LWZ 20190914-7	ON063706	ON063906	ON063767	_	_	_	Wang et al. (2023)
	Tubulicrinis xantha	CLZhao 2868	MT153874	MT153881	_	_	_	_	He et al. (2020)
	Tubulicrinis xantha	CLZhao 2869	MT153875	MT153882	_	_	_	_	He et al. (2020)
	Tubulicrinis yunnanensis	CLZhao 3418	MT153879	MT153886	-	_	_	_	He et al. (2020)
	Tubulicrinis yunnanensis	CLZhao 9717	MT153880	MT153887	_	_	_	_	He et al. (2020)
Hysterangiales/	Aroramyces	H4010	_	DQ218524	_	_	DQ218941	DQ219118	Liu et al. (2022c)
Hysterangiaceae	gelatinosporus								
-/Mesophelliaceae	Chondrogaster	OSC49298	_	DQ218538	_	_	DQ218958	DQ219136	Liu et al. (2022c)
	pachysporus								
Jaapiales /Jaapiaceae	Jaapia argillacea	CBS 252.74	GU187524	GU187581	_	_	GU187788	GU187711	Liu et al. (2022c)
Lepidostromatales/	Lepidostroma vilgalysii	RV-MX16	JN698907	JN698908	_	_	_	_	Liu et al. (2022c)
Lepidostromataceae									
	Sulzbacheromyces	Sulzbacher 1479	KC170320	KC170318	_	_	_	_	Liu et al. (2022c)
	caatingae								
Phallales/Phallaceae	Lysurus mokusin	MB02012	_	_	_	_	DQ219101	DQ219277	He et al. (2019)
	Phallus hadriani	AFTOL-ID 683	DQ404385	AY885165	-	_	DQ408114	DQ435792	Matheny et al. (2007)
Polyporales/	Austroporia stratosa	FF 461	KY948806	KY948881	-	KY949014	-	-	Justo et al. (2017)
Adustoporiaceae									
	Austroporia stratosa	Cui 16619	MW377266	MW377346	-	MW337163	MW337032	MW337095	Liu et al. (2022b)
	Rhodonia placenta	Wei 1406	KF699129	KT893750	-	ON424739	KT893746	KT893748	Liu et al. (2022b)
	Rhodonia subrancida	Cui 16462	MW377322	ON417243	-	MW337202	MW337075	ON424877	Liu et al. (2022b)
-/Auriporiaceae	Auriporia aurea	Cui 10665	KX966182	KX966183	-	-	-	KX966184	Shen et al. (2019)
	Auriporia aurulenta	Dai 6922	MW377261	MW377342	MW382053	-	-	-	Liu et al. (2022b)
 -/Cerrenaceae 	Cerrena unicolor	He 6082	OM100740	OM083972	ON417068	ON424672	ON424756	ON424825	Liu et al. (2022b)
	Cerrena zonata	Cui 18502	ON417154	ON417204	ON417070	ON424674	ON424758	ON424827	Liu et al. (2022b)
	Radulodon casearius	Cui 17979	ON417185	ON417236	ON417093	ON424727	_	ON424868	Liu et al. (2022b)
-/Climacocystaceae	Climacocystis	Dai 4014	KJ566627	KJ566637	_	ON688463	_	KJ566644	Liu et al. (2023a)
	borealis								

Order/Family	Species name	Sample no.	GenBank accessions no.						References
·	-	•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	—
	Climacocystis borealis	FD 31	KP135308	KP135210	_	KP134882	KP134895	_	Liu et al. (2023a)
	Climacocystis borealis	KHL 13318	JN710527	JN710527	_	_	_	_	Cao et al. (2021b)
	Climacocystis montana	Cui 17122	ON682359	ON680811	_	ON688466	ON688485	ON688505	Liu et al. (2023a)
	Climacocystis montana	Cui 17123	ON682360	ON680812	_	ON688467	ON688486	ON688506	Liu et al. (2023a)
-/Dacryobolaceae	Dacryobolus gracilis	He 5995	ON417156	ON417206	ON417075	_	ON424760	ON424831	Liu et al. (2022b)
	Dacryobolus karstenii	Miettinen-18685	KY948743	KY948900		KY948955			Justo et al. (2017)
	Dacryobolus montanus	He 6314	ON417157	ON417207	ON417076	_	ON424761	ON424832	Liu et al. (2022b)
	Dacrvobolus sudans	FP 101996	KC585332	KC585157	_	_	_	_	Ortiz-Santana et al.
	, , , , , , , , , , , , , , , , , , ,								(2013)
-/Fibroporiaceae	Fibroporia ceracea	Cui 16300	MW377294	MW377373	MW382080	MW337187	MW337055	MW337121	Liu et al. (2022b)
*	Fibroporia vaillantii	Dai 23467	ON417158	ON417208	ON417077	ON424680	ON424763	ON424833	Liu et al. (2022b)
	Pseudofibroporia	He 20120721	KU550477	KU550500	KU550520		KU550555	KU550574	Chen et al. (2017)
	citrinella								
	Pseudofibroporia	Yuan 6181	KU550478	KU550501	KU550521		KU550556	KU550575	Chen et al. (2017)
	citrinella								
-/Fomitopsidaceae	Antrodia serpens	Dai 7465	KR605813	KR605752	KR606013	ON424666	KR610832	KR610742	Han et al. (2016)
	Antrodia subserpens	Cui 16285	ON417152	ON417201	ON417067	ON424669	ON424755	ON424824	Liu et al. (2022b)
	Brunneoporus malicola	Cui 16272	OK045505	OK045511	OK045499	OK076903	OK076931	OK076959	Liu et al. (2022b)
	Daedalea dickinsii	Yuan 2707	KP171202	KP171224	KR605983	_	KR610804	KR610713	Han et al. (2016)
	Daedalea quercina	Dai 12659	KP171208	KP171230	KR605990	ON424676	KR610810	KR610719	Liu et al. (2022b)
	Fomitopsis ostreiformis	Cui 18217	OL621855	OL621244	OL621755	ON424689	OL588970	OL588984	Liu et al. (2022b)
	Fomitopsis subtropica	Dai 18566	OL621854	OL621243	OL621754	ON424691	ON424768	OL588983	Liu et al. (2022b)
-/Fragiliporiaceae	Fragiliporia fragilis	Dai 13080	KJ734260	KJ734264	KJ734268	_	KJ790248	KJ790245	Zhao et al. (2015)
· ·	Fragiliporia fragilis	Dai 13559	KJ734261	KJ734265	KJ734269	_	KJ790249	KJ790246	Zhao et al. (2015)
-/Gelatoporiaceae	Cinereomyces lindbladii	H 19911	FN907909	FN907909	_	_	_	_	Fan et al. (2017)
	Cinereomyces lindbladii	CBS:290.71	MH860129	MH871902	_	_	_	_	Vu et al. (2019)
	Gelatoporia	Cui 17120	ON417159	ON417209	_	ON424694	ON424772	ON424835	Liu et al. (2022b)
	subvermispora								
	Gelatoporia	Dai 22847	ON417160	ON417210	_	ON424695	ON424773	ON424836	Liu et al. (2022b)
	subvermispora								
	Obba rivulosa	Cui 16483	ON417171	ON417221	_	ON424711	ON424787	ON424849	Liu et al. (2022b)
	Obba rivulosa	Cui 16482	ON417172	ON417222	_	ON424712	ON424788	ON424850	Liu et al. (2022b)
-/Gloeoporellaceae	Gloeoporellus merulinus	Dai 18735	MW377299	MW377378	_	MW337192	ON688490	MW337126	Liu et al. (2023a)
	Gloeoporellus merulinus	Dai 18782	MW377300	MW377379	_	MW337193	ON688491	MW337127	Liu et al. (2023a)
	Gloeoporellus merulinus	Cui 16629	ON682364	ON680816	_	ON688471	ON688492	ON688512	Liu et al. (2023a)
	Gloeoporellus merulinus	Cui 16650	ON682365	ON680817	_	ON688472	ON688493	ON688513	Liu et al. (2023a)
-/Grifolaceae	Grifola frondosa	AFTOL 701	AY854084	AY629318		AY864876		AY885153	Lutzoni et al. (2004)

Table 1	Contined.
---------	-----------

Order/Family	Species name	Sample no.			References				
	-	-	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
	Grifola frondosa	Dai 19172	ON417161	ON417211	_	ON424696	ON424774	ON424837	Liu et al. (2022b)
-/Hyphodermataceae	Hyphoderma	NH 11538 (GB)	DQ677492	DQ677492	_	_	_	_	Larsson (2007b)
	cremeoalbum								
	Hyphoderma	CLZhao 17007	OM955862	OM955862	OQ706819	-	-	-	Present study
	cremeoalbum								
	Hyphoderma litschaueri	FP 101740	KP135295	KP135219	_	KP134868	KP134965	_	Floudas & Hibbett
									(2015)
	Hyphoderma	FD 335	KP135298	KP135220	_	KP134869	KP134966	-	Floudas & Hibbett
	medioburiense								(2015)
	Hyphoderma mutatum	HHB 15479	KP135296	KP135221	_	KP134870	KP134967	-	Floudas & Hibbett
									(2015)
	Hyphoderma setigerum	FD 312	KP135297	KP135222	_	KP134871	_	-	Floudas & Hibbett
									(2015)
	Hyphoderma setigerum	FCUG 1688	AJ534272	-	-	_	_	-	Nilsson et al. (2003)
	Hyphoderma setigerum	NH 6748	AJ534259	-	-	_	_	-	Paulus et al. (2007)
	Hyphoderma transiens	NH 12304 (GB)	DQ677504	DQ677504	-	_	_	-	Larsson (2007b)
	Hyphoderma transiens	CLZhao 1493	MT955164	-	-	_	_	-	Present study
	Hyphoderma transiens	CLZhao 1606	MT955162	_	-	_	_	-	Present study
	Hyphoderma transiens	CLZhao 1667	MT955166	-	OQ706787	-	-	-	Present study
	Hyphoderma transiens	CLZhao 1719	MT955163	OM985767	-	_	_	-	Present study
	Hyphoderma transiens	CLZhao 1768	MT955165	-	-	_	_	-	Present study
-/Hypochniciaceae fam.	Hypochnicium	Otto Miettinen	KY415959	KY415959	-	_	_	-	Maekawa et al. (2023)
nov.	bombycinum	9441 (H)							
	Hypochnicium	HHB 12631	KY948801	KY415959	_	KY948930	_	_	Justo et al. (2017)
	bombycinum								
	Hypochnicium karstenii	NH 10924	DQ677510	DQ677510	_	_	_	_	Larsson (2007b)
	Hypochnicium lyndoniae	NL 041031	JX124704	JX124704	_	_	JX109876	JX109905	Unpublished
	Hypochnicium	TUMH: 64581	LC663674	LC663693	_	_	_	_	Maekawa et al. (2023)
	multiforme								
-/Incrustoporiaceae	Skeletocutis	Cui 8844	JN048764	JN048783	-	-	-	-	Zhao et al. (2016b)
	albomarginata								
	Skeletocutis	Cui 8838	JN048765	JN048784	-	-	_	-	Zhao et al. (2016b)
	albomarginata								
	Skeletocutis amorpha	83252	JQ518277	_	_	-	_	-	Carlsson et al. (2012)
	Skeletocutis bambusicola	Dai 16613	MN908950	MN908952	-	-	-	-	Unpublished
	Skeletocutis bambusicola	Dai 16597	MN908949	MN908951	-	-	-	-	Unpublished
	Skeletocutis calida	X3459	KY953065	_	_	_	_	_	Korhonen et al. (2018)

Order/Family	Species name	Sample no.		References					
	-	-	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
	Skeletocutis calida	X3457	KY953086	_	_	_	_	_	Korhonen et al. (2018)
	Skeletocutis	Cui 17990	MZ327280	MZ348536	-	_	-	-	Jayawardena et al. (2023)
	cangshanensis								
	Skeletocutis	Cui 17994	MZ327281	MZ348537	_	_	_	-	Jayawardena et al. (2023)
	cangshanensis								
	Skeletocutis coprosmae	Cui 16623	ON417193	ON417245	ON417100	ON424741	ON424813	ON424879	Liu et al. (2022b)
	Skeletocutis coprosmae	X518	KY953057	KY953057	_	_	_	KY953115	Korhonen et al. (2018)
	Skeletocutis cummata	X2328	KY953040	KY953040	_	_	_	KY953122	Korhonen et al. (2018)
	Skeletocutis cummata	X465	KY953055	KY953055	_	_	_	KY953113	Korhonen et al. (2018)
	Skeletocutis delicata	X321	MF685349	-	-	-	-	-	Miettinen & Niemela
	Skalatocutis delicata	V307	ME685350						(2018) Miattinan & Niamala
	Skeleloculis deliculu	A397	WI 085550	_	_		-	_	(2018)
	Skeletocutis exilis	X395	MF685356	-	-	-	-	-	Miettinen & Niemela
		X1/07	NEC05257						(2018)
	Skeletocutis exilis	X1637	MF685357	_	_	-	-	-	(2018)
	Skeletocutis kuehneri	X3324	MF685361	-	-	_	-	-	Miettinen & Niemela
	Shalata autia lanida	V2000	ME075120	ME075120				VV052122	(2018) Korbonon et el. (2018)
	Skeleiocuits lepiaa	A2990 X2222	WIFU/3130	WIF073130	_	_	_	K 1933133	Komonen et al. (2018)
	Skeletocuns lepiaa	A2333	K 1955005	K 1955005	_	- KN0490(7	_	K 1955120	Kornonen et al. (2018)
	Skeletocutis illacina	HHB10522 sp	K Y 948834	K Y 948894	_	KY948967	_	-	Justo et al. (2017)
	Skeletocutis	CLZnao 1152	MF924720	MF924722	_	_	_	-	wu et al. (2018b)
	mopansnanensis	CI 7 1 1104	NE024721	ME024722					W
	Skeletocutis monanshanensis	CLZhao 1184	MF924721	MF924723	-	-	-	_	Wu et al. (2018b)
	Skeletocutis nemoralis	X2323	KY953035	KY953035	_	_	_	KY953121	Korhonen et al. (2018)
	Skeletocutis nemoralis	X2342	KY953091	_	_	_	_	_	Korhonen et al. (2018)
	Skeletocutis nivea	Cui 16752	ON682369	ON680821	_	ON688477	ON688497	ON688517	Liu et al. $(2023a)$
	Skeletocutis nivea Skeletocutis ochroalba	X3371	KY953070	KY953070	_	_	_	KY953137	Korhonen et al. (2018)
	Skeletocutis ochroalba	X3372	KY953071	_	_	_	_	KY953138	Korhonen et al. (2018)
	Skeletocutis pseudo-	Dai 16528	KY245962	_	_	_	_	-	Fan et al. (2017)
	odora	Dui 10520	R I Z +3702						
	Skeletocutis pseudo-	Dai 16525	KY245960	_	_	-	-	_	Fan et al. (2017)
	odora								
	Skeletocutis	CLZhao 3455	OR167775	OR449953	OR469093	OR683148	_	-	Present study
	rhizomorpha								

Order/Family	Species name	Sample no.			GenBank ac	cessions no.			References
·	-	•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	—
	Skeletocutis	CLZhao 3516	OR167776	OR449954	OR469094	-	-	_	Present study
	rhizomorpha		0.0.4						
	Skeletocutis	CLZhao 3552 *	OR167777	OR449955	OR469095	OR683149	_	_	Present study
	rnizomorpna	CI 71 2592	001/7779	00440056	00460006				Development of a lar
	Skeletocutis	CLZhao 3583	OR167778	OK449956	OK469096	_	_	-	Present study
	rnizomorpna	CI 7haa 2((7	OD1(7770	00440057	00460007	00(92150			Dussent stade
	Skeleloculis	CLZIIAO 5007	UK10///9	UK44995/	UK409097	UK085150	—	_	Present study
	rnizomorpha Skolato outia a sminilo ata	V0247	VV052109	VV052100					$V_{\text{orthorsen at al.}}(2018)$
	Skeletoculis semipliedid	A2347 V2255	K 1955108	K 1933108	—	_	—	_	Komonen et al. (2018)
	Skeletoculis semipliedid	A2555 Dei 10502	N 1933102 MN008052	N 1933102	—	_	—	_	Normonen et al. (2018)
	Skeleloculis	Dai 19393	WIN908933	MIN903044	—	-	—	-	Du & Dai (2020)
	Skalatocutis	Dai 10500	MN008054	MN005045					$D_{11} \& D_{21} (2020)$
	subalbomarginata	Dai 19399	10111900934	10110903043	_	_	_	-	Du & Dai (2020)
	Skeletocutis subchrysella	Cui 17748	M7327278	M7348534	_	_	_	_	Javawardena et al. (2023)
	Skeletocutis	Dai 18374	MG893204	MN905061	_	_	_	_	Du & Ii (2019)
	vietnamensis	Dui 10574	1100/3204	111100001					Du & J1 (2017)
	Skeletocutis	Dai 18378	MG893205	MN905062	_	_	_	_	Du & Ii (2019)
	vietnamensis	Dui 10070	1100/0200	1111000002					
	Skeletocutis vunnanensis	Dai 15709	KU950434	KU950436	MW424990	MW526263	_	MW427605	Bian et al. (2016)
	Skeletocutis vunnanensis	Dai 15712	KU950435	KU950437	_	_	_	_	Bian et al. (2016)
	Tyromyces chioneus	FD 4	KP135311	KP135291	_	KP134891	KP134977	_	Floudas & Hibbett
	yy								(2015)
	<i>Tyromyces</i> sp.	Cui 16652	ON417196	ON417248	_	ON424749	ON424820	ON424885	Liu et al. (2022b)
-/Irpicaceae	Byssomerulius corium	FP-102382	KP135007	KP135230	_	KP134802	KP134921	_	Floudas & Hibbett
*	-								(2015)
	Efibula americana	FP-102165	KP135016	KP135256	_	KP134808	KP134916	MZ913669	Floudas & Hibbett
									(2015)
	Efibula americana	HHB-8468	KP135012	_	_	_	_	_	Floudas & Hibbett
									(2015)
	Efibula bubalina	MA-Fungi 86614	KF483005	KF528096	_	-	-	-	Li et al. (2022)
	Efibula clarkii	FD-228	KP135019	-	_	KP134803	_	-	Floudas & Hibbett
									(2015)
	Efibula daweishanensis	CLZhao 18946 *	OR094488	-	OR469098	_	_	OR541912	Present study
	Efibula daweishanensis	CLZhao 19002	OR094489	OR449958	OR469099	_	_	_	Present study
	Efibula	CLZhao 25072	OR094490	OR449959	OR469100	_	OR733284	OR541913	Present study
	daweishanensis								

Order/Family	Species name	Sample no.			References				
·		•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
	Efibula gracilis	FD-455	KP135027	MZ637116	_	KP134804	OK136077	MZ913679	Chen et al. (2021)
	Efibula gracilis	FP-102052	KP135028	_	_	_	_	_	Floudas & Hibbett
									(2015)
	Efibula grandinosa	He 6312	MZ422509	MZ422480	_	_	_	_	Li et al. (2022)
	Efibula hainanensis	He 6004	MW580949	MW580939	_	_	_	_	Li et al. (2022)
	Efibula hainanensis	Chen 1284	ON117184	_	_	_	_	_	Li et al. (2022)
	Efibula intertexta	Wu 1707-93	MZ636953	MZ637117	_	MZ748416	OK136085	_	Chen et al. (2021)
	Efibula intertexta	Wu 1707-96	MZ636954	MZ637118	_	MZ748417	OK136086	_	Chen et al. (2021)
	Efibula matsuensis	Wu 1011-18	MZ636956	MZ637119	_	MZ748418	OK136078	MZ913680	Chen et al. (2021)
	Efibula matsuensis	Wu 1011-19	MZ636957	MZ637120	_	_	_	_	Chen et al. (2021)
	Éfibula shenghuae	He 3384	MZ422508	MZ422479	_	_	_	_	Li et al. (2022)
	Efibula subglobispora	Chen 1716	MZ636962	MZ637124	_	MZ748427	OK136075	MZ913673	Chen et al. (2021)
	Efibula subglobispora	GC 1604-13	MZ636963	MZ637125	_	MZ748428	OK136076	MZ913674	Chen et al. (2021)
	Efibula taiwanensis	He 4582	MZ422507	MZ422478	_	_	_	_	Li et al. (2022)
	Efibula tropica	WEI 18-149	MZ636967	MZ637129	_	MZ748419	OK136079	MZ913681	Chen et al. (2021)
	Efibula tropica	Wu 0809-8	MZ636968	MZ637130	_	_	_	_	Chen et al. (2021)
	Éfibula tuberculata	Wu 1005-55	MZ636970	MZ637132	_	MZ748426	OK136074	MZ913672	Chen et al. (2021)
	Efibula tuberculata	Wu 0711-148	MZ636969	MZ637131	_	_	_	MZ913671	Chen et al. (2021)
	Efibula turgida	Wu 0910-86	MZ636972	MZ637134	_	MZ748439	OK136091	MZ913716	Chen et al. (2021)
	Efibula turgida	Wu 0910-99	MZ636973	MZ637135	_	MZ748440	OK136092	MZ913717	Chen et al. (2021)
	Efibula yunnanensis	Wu 880515-1	MZ636977	GQ470672	_	MZ748420	OK136080	MZ913682	Chen et al. (2021)
	Efibula yunnanensis	CLZhao 11641	MT611529	_	_	_	_	_	Ma et al. (2020)
	Irpex flavus	Wu 0705-1	MZ636988	MZ637149	_	MZ748432	OK136087	MZ913683	Liu et al. (2022b)
	Irpex lacteus	FD-9	KP135026	KP135224	_	KP134806	_	_	Floudas & Hibbett
									(2015)
	Irpex latemarginatus	FP-55521-T	KP135024	KP135202	_	KP134805	KP134915	_	Floudas & Hibbett
									(2015)
	Leptoporus mollis	TJV-93-174-T	KY948795	EU402510	_	KY948957	OK136102	MZ913694	Chen et al. (2021)
	Leptoporus mollis	RLG 7163	KY948794	MZ637155	_	KY948956	OK136101	MZ913693	Liu et al. (2023a)
	Phanerochaetella	Wu 9606-39	MZ637020	GQ470638	_	MZ748422	OK136082	MZ913687	Liu et al. (2023a)
	angustocystidiata								
	Phanerochaetella	Chen 1362	MZ637025	GQ470646	_	MZ748423	OK136083	MZ913689	Liu et al. (2023a)
	leptoderma								
-/Ischnodermataceae	Ischnoderma benzoinum	Cui 17058	ON417164	ON417214	ON417080	ON424699	ON424777	ON424839	Liu et al. (2022b)
	Ischnoderma benzoinum	Cui 17700	ON417165	ON417215	ON417081	ON424700	ON424778	ON424840	Liu et al. (2022b)
	Ischnoderma resinosum	FD 328	KP135303	KP135225	_	KP134884	KP134972	_	Floudas & Hibbett
									(2015)

Order/Family	Species name S	Sample no.			GenBank ac	cessions no.			References
2	L .		ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
-/Laetiporaceae	Laetiporus montanus	Cui 10011	KF951274	KF951315	KX354570	MG867670	KT894790	KX354617	Song et al. (2018)
-	Laetiporus sulphureus	Cui 12389	KR187106	KX354487	KX354561	ON424702	KX354653	KX354608	Song et al. (2018)
-/Laricifomitaceae	Gilbertsonia angulopora	FP 133019	KC585354	KC585182	_	_	_	_	Ortiz-Santana et al. (2013)
	Laricifomes officinalis	JV 0309/49-J	KR605821	KR605764	_	_	KR610846	KR610757	Han et al. (2016)
	Laricifomes officinalis	JV 9010/14	KR605822	KR605765	_	_	KR610847	KR610758	Han et al. (2016)
	Ryvardenia campyla	Cui 16674	MW377323	MW377400	_	MW337203	MW337076	MW337143	Liu et al. (2022b)
	Ryvardenia cretacea	Cui 16731	MW377324	MW377401	MW382102	MW337204	MW337077	MW337144	Liu et al. (2022b)
-/Meripilaceae	Meripilus giganteus	FP 135344	KP135307	KP135228	_	KP134873	_	_	Floudas & Hibbett (2015)
	Physisporinus longicystidius	Cui 16630	ON417177	ON417227	_	ON424717	ON424795	ON424856	Liu et al. (2022b)
	Physisporinus longicystidius	Cui 16725	ON417178	ON417228	_	ON424718	ON424796	ON424857	Liu et al. (2022b)
	Rigidoporus undatus	Miettinen 13591	KY948731	KY948870	_	KY948945	_	_	Justo et al. (2017)
-/Meruliaceae	Luteoporia albomarginata	GC 1702-1	LC379003	LC379155	_	LC379160	LC387358	LC387377	Chen et al. (2021)
	Luteoporia lutea	GC 1409-1	MZ636998	MZ637158	_	MZ748467	OK136050	MZ913656	Chen et al. (2021)
	Mycoacia fuscoatra	OMC1380	KY948754	_	_	_	_	_	Justo et al. (2017)
	Mycoacia fuscoatra	CLZhao 18423	MW732423	MW732461	MW732745	_	_	_	Present study
	Phlebia nantahaliensis	HHB 2816	KY948777	KY948852	_	KY948920	OK136063	MZ913701	Liu et al. (2023a)
	Phlebia tomentopileata	GC 1602-67	MZ637040	MZ637244	_	MZ748457	OK136064	MZ913702	Chen et al. (2021)
	Scopuloides allantoidea	Wei 16-060	MZ637081	MZ637279	_	MZ748463	OK136047	MZ913664	Chen et al. (2021)
-/Neohypochniciaceae fam. nov.	Bulbillomyces farinosus	FP 100488T	KY948802	_	_	KY948929	_	_	Liu et al. (2023a)
	Bulbillomyces farinosus	NH 9933 (GB)	DQ681201	DQ681201	_	_	_	_	Larsson (2007b)
	Gyrophanopsis japonica	TUMH:61400	LC663668	LC663688	_	_	_	_	Maekawa et al. (2023)
	Gyrophanopsis polonense	NH 11337 (GB)	DQ677511	DQ677511	-	-	-	-	Larsson (2007b)
	Gyrophanopsis zealandica	NH 15340	DQ309068	_	-	-	-	-	Paulus et al. (2007)
	Neohypochnicium albostramineum	NH 3688	AF429422	_	-	_	-	-	Paulus et al. (2007)
	Neohypochnicium albostramineum	NH 9637	AF429423	-	_	-	-	_	Paulus et al. (2007)
	Neohypochnicium aotearoae	NH 15862	GQ906536	_	-	-	-	_	Telleria et al. (2010a)

Order/Family	Species name	Sample no.			References				
	-	-	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	_
	Neohypochnicium	TUMH:61220	LC663669	LC663689	_	_	-	-	Maekawa et al. (2023)
	asiaticum								
	Neohypochnicium	TUMH:61227	LC663672	-	-	-	-	_	Maekawa et al. (2023)
	asiaticum								N 1 (2010)
	Neohypochnicium	CBS:208.54	MH857294	MH868826	_	-	-	-	Vu et al. (2019)
	cremicolor Nachypochrisium	NH 2406	AE420425						$\mathbf{P}_{2}(\mathbf{n}) = \mathbf{P}_{2}(\mathbf{n})$
	cremicolor	111 5400	AI'429423	-	—	—	-	—	Faulus et al. (2007)
	Neohynochnicium	MUCL 32103	DO658163	_	_	_	_	_	Paulus et al. (2007)
	cvstidiatum	MIC CE 32103	2020102						1 uulus et ul. (2007)
	Neohypochnicium	MUCL 32104	DQ658164	_	_	_	_	_	Paulus et al. (2007)
	cystidiatum								
	Neohypochnicium	CLZhao 17726 *	OQ789010	-	_	_	-	-	Present study
	daweishanense								
	Neohypochnicium	CLZhao 18089	OQ789012	_	OR469101	_	-	-	Present study
	farinaceum		0.0-00010	0.0-0000					
	Neohypochnicium	CLZhao 18764	OQ789013	OQ788992	_	-	-	-	Present study
	jarinaceum Nachurachuicium	CI 7baa 19771	00720014	00788003	OD 460103			OD541014	Dresont study
	heonypochnicium farinacoum	CLLIIAU 10//1	UQ789014	UQ788993	UK409102	-	-	UK341914	Fresent study
	Neohypochnicium	CLZhao 18787	00789015	00788994	_	_	_	_	Present study
	farinaceum	02211110 10707	0 2.00010	0 Q . 0077 .					1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Neohypochnicium	CLZhao 18792	OQ789016	OQ788995	OR469103	OR683151	_	_	Present study
	farinaceum		-	-					-
	Neohypochnicium	CLZhao 18798	OQ789017	-	_	_	-	-	Present study
	farinaceum								
	Neohypochnicium	CLZhao 18820 *	OQ789018	OQ788996	OR469104	-	-	-	Present study
	farinaceum			0.0500005					
	Neohypochnicium	CLZhao 18844	OQ789019	OQ788997	_	_	-	_	Present study
	Jarinaceum Nachwrochnicium	CI 7haa 18850	00780020	00788008	OP/60105				Procent study
	farinaceum		00789020	00/00330	0K409103	—	-	—	I resent study
	Neohypochnicium	CLZhao 18856	00789021	_	_	_	_	_	Present study
	farinaceum		- X						= - • • • • • • • • • • • • • • • • • •
	Neohypochnicium	CLZhao 18867	OQ789022	_	OR469106	OR683152	_	OR541915	Present study
	farinaceum		-						•

Itsn1.SUmtSURPB1RPB2TEF1NoohypochniciumCLZhao 188810Q789023Present studyfarinaceumCLZhao 190220Q789024-0R469107Present studyfarinaceumCLZhao 190220Q789024Present studyMeohypochniciumFCUG 2052AP429426Telleria et al. (2010a)geogeniumMA-Fungi 19156FN552534Telleria et al. (2010a)geogeniumMA-Fungi 19156FN552536Telleria et al. (2010a)meohypochniciumMA-Fungi 19156FN552536Mackawa et al. (2023)huinoyserseMA-Fungi 19159HG000303<	Order/Family	Species name	Sample no.			GenBank a	ccessions no).	References		
Neohypochnicium princaceum Neohypochnicium princaceumCLAno 19820QR98023Neohypochnicium princaceumPersen studyNeohypochnicium geogenium geogenium geogenium geogenium hintayenseFCUG 2052AF429426Telleria et al. (2010a)Neohypochnicium geogenium geogenium geogenium geogenium hintayenseMA-Fungi 9156FN52536Telleria et al. (2010a)Neohypochnicium geogenium geogenium hintayenseMA-Fungi 79156FN52536Telleria et al. (2010a)Neohypochnicium genereme hintayenseMA-Fungi 79156FN52535 <t< th=""><th></th><th>-</th><th>-</th><th>ITS</th><th>nLSU</th><th>mtSSU</th><th>RPB1</th><th>RPB2</th><th>TEF1</th><th></th></t<>		-	-	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1		
Jarinaceum Neohypochnicium Jarinaceum MeohypochniciumCLZhao 1902Q789024-QR469107Persent studyJarinaceum Seogenium NeohypochniciumFCUG 2052AF429426Telleria et al. (2010a)Seogenium Neohypochnicium Seogenium NeohypochniciumMA-Fungi 79155FN552536Telleria et al. (2010a)Neohypochnicium seineense Neohypochnicium19598TellHG000303<		Neohypochnicium	CLZhao 18881	OQ789023	_	_	_	-	-	Present study	
Neolypochnicium portinaceum NeolypochniciumCUC 2052AF429426Fresent studyNeolypochnicium geogenium NeolypochniciumMA-Fungi 48308FN552534Telleria et al. (2010a)geogenium NeolypochniciumMA-Fungi 79156FN552536Telleria et al. (2010a)geogenium geogeniumMA-Fungi 79156FN552536Telleria et al. (2010a)geogenium geogenium geogeniumMA-Fungi 79156FN552536Telleria et al. (2010a)Neolypochnicium huinayenseMA-Fungi 79155FN552535JN939579Telleria et al. (2010a)Neolypochnicium nichchi minosporum mechypochniciumGG-GUY13-100KY019170Telleria et al. (2017a)Neolypochnicium nicioraporum murinum murinumGG-GUY12-101KY019171Telleria et al. (2017a)Neolypochnicium niciraporum murinumCLZhao 19012QQ788985QQ789004QR469108Present studyNeolypochnicium murinum murinumCLZhao 19017QQ788985QQ789006R469109Present studyNeolypochnicium murinum murinumCLZhao 19017QQ788986QQ789006R469109<		farinaceum									
Jarinace NeohypochniciumFCUG 2052AF429426Telleria et al. (2010a)geogenium NeohypochniciumMA-Fungi 48308FN552534Telleria et al. (2010a)geogenium ogenypochniciumMA-Fungi 79156FN552536Telleria et al. (2010a)guineense polypochniciumMA-Fungi 79156FN552536Telleria et al. (2010a)NeohypochniciumMA-Fungi 13980HG326616Mackawa et al. (2023)NeohypochniciumMA-Fungi 13980HG326616Mackawa et al. (2013)NeohypochniciumMA-Fungi 13980HG326616Mackawa et al. (2013)NeohypochniciumMA-Fungi 79155FN552535JN939579		Neohypochnicium	CLZhao 19022	OQ789024	-	OR469107	-	—	-	Present study	
NeohypochniciumPCC0 2052NP429420		Jarinaceum Nachara a hari airrea	ECUC 2052	A E 420.42C						Tallaria et al. $(2010a)$	
Recipyochnicium NeohypochniciumMA-Fungi 48308FN552534Telleria et al. (2010a)geogenium NeohypochniciumMA-Fungi 79156FN552536Telleria et al. (2010a)guineense Neohypochnicium19598TellHG000303Maekawa et al. (2023)huinayense 		Neonypochnicium	FCUG 2052	AF429420	_	_	_	_	-	Tellena et al. (2010a)	
NewlypochniciumMA-Fungi 79156FNS52536Telleria et al. (2010a)guineenseMA-Fungi 79156FNS52536Telleria et al. (2010a)Neohypochnicium19598TellHG000303Maekawa et al. (2023)huitusyenseMA-Fungi 13980HG326616Maekawa et al. (2023)NeohypochniciumMA-Fungi 79155FNS52535JN939579Maekawa et al. (2010a)NeohypochniciumGG-GUY13-100KY019170Gruhn et al. (2017)micheliNeohypochniciumGG-GUY12-101KY019171Gruhn et al. (2017)NeohypochniciumGG-GUY12-101KY019171Fresent studyNeohypochniciumCLZhao 6855OQ788983Present studyNeohypochniciumCLZhao 19012*OQ788985OQ789005OR469108OR541916Present studyNeohypochniciumCLZhao 19012OQ788985OQ789006Present studyNeohypochniciumCLZhao 19020OQ788986OQ789006OR469110Present studyNeohypochniciumCLZhao 19125OQ788988OQ789008 <t< td=""><td></td><td>geogenium Neobypochnicium</td><td>MA Fungi 48308</td><td>EN552534</td><td></td><td></td><td></td><td></td><td></td><td>Telleria et al. $(2010a)$</td></t<>		geogenium Neobypochnicium	MA Fungi 48308	EN552534						Telleria et al. $(2010a)$	
Boolymon Neohypochnicium guineenseMA-Fungi 79156FN552536Telleria et al. (2010a)guineense Neohypochnicium19598TellHG000303Maekawa et al. (2023)huinayense 		aeoaenium	MA-Puligi 40500	111052554	_	_	_	_	_	Tenena et al. (2010a)	
Bit Programment guineenseHistoric ProcessorFreedoctionguineense19598TellHG000303Mackawa et al. (2023)NeohypochniciumMA-Fungi:13980HG326616Mackawa et al. (2023)NeohypochniciumMA-Fungi:79155FN552535JN939579Mackawa et al. (2010a)NeohypochniciumGG-GUY13-100KY019170Gruhn et al. (2017)micheliiGG-GUY12-101KY019171Gruhn et al. (2017)MeohypochniciumGG-GUY12-101KY019171Gruhn et al. (2017)MeohypochniciumGCJatao 19012*Q0788983Present studyNeohypochniciumCLZhao 19012*Q0788985Q0789005OR469108Present studyMurinumCLZhao 19010Q0788985Q0789005OR469109Present studyNeohypochniciumCLZhao 19020Q0788986Q0789006Present studyNeohypochniciumCLZhao 19020Q0788986Q0789007OR469110Present studyNeohypochniciumCLZhao 19067Q0788988Q0789008R469111Present studyNeohypochniciumCLZhao 19125Q0788989-OR469111		Neohypochnicium	MA-Fungi 79156	FN552536	_	_	_	_	_	Telleria et al. (2010a)	
Northypochnicium huinayense19598TellHG000303Maekawa et al. (2023)Neohypochnicium huinayenseMA-Fungi:13980HG326616Maekawa et al. (2023)Neohypochnicium nicheliiMA-Fungi 79155FN552535JN939579Telleria et al. (2010a)Neohypochnicium nicheliiGG-GUY13-100KY019170Gruhn et al. (2017)Neohypochnicium nicrosporum murinumGG-GUY12-101KY019170Gruhn et al. (2017)Neohypochnicium nicrosporum murinumGC-GUY12-101KY019171Present studyNeohypochnicium murinumGLZhao 6855OQ788983Present studyNeohypochnicium murinumCLZhao 19012*QQ788985OQ789006OR469108Present studyNeohypochnicium murinumCLZhao 19013OQ788986OQ789006Present studyNeohypochnicium murinumCLZhao 19031OQ788987OQ789007OR469110Present studyNeohypochnicium murinumCLZhao 19067OQ788988OQ789008OR469110Present studyNeohypochnicium murinumCLZhao 19067OQ788988OQ789008OR469110Present studyNeohypochnicium 		guineense	init i ungi //100	11002000							
huinayense NeohypochniciumMA-Fungi:13980HG326616Maekawa et al. (2023)NeohypochniciumMA-Fungi:79155FN552535JN939579Telleria et al. (2010a)NicheliiGG-GUY13-100KY019170Telleria et al. (2017)NeohypochniciumGG-GUY12-101KY019170Gruhn et al. (2017)NicrosporumGG-GUY12-101KY019171Gruhn et al. (2017)NeohypochniciumGG-GUY12-101KY019171Present studyNeohypochniciumGLZhao 6855OQ788983Present studyNeohypochniciumCLZhao 19012 *OQ788984OQ789005OR469108Present studyNeohypochniciumCLZhao 19017OQ788985OQ789005OR469109OR541917Present studyNeohypochniciumCLZhao 19020OQ788986OQ789006Present studyNeohypochniciumCLZhao 19020OQ788987OQ789007OR469110OR541917Present studyNeohypochniciumCLZhao 19031OQ788988OQ789008OR469110Present studyNeohypochniciumCLZhao 19125OQ788989-OR469112Present studyNe		Neohypochnicium	19598Tell	HG000303	_	_	_	_	_	Maekawa et al. (2023)	
Neohypochnicium huinayenseMA-Fungi 13980HG326616Maekawa et al. (2023)Neohypochnicium micheliiMA-Fungi 79155FN552535JN939579Telleria et al. (2010a)Neohypochnicium microsporumGG-GUY13-100KY019170Gruhn et al. (2017)Neohypochnicium microsporumGG-GUY12-101KY019171Gruhn et al. (2017)Neohypochnicium murinumGG-GUY12-101KY019170Gruhn et al. (2017)Neohypochnicium murinumCLZhao 6855OQ788983Present studyNeohypochnicium murinumCLZhao 19012*OQ788985OQ789005OR469108Present studyNeohypochnicium murinumCLZhao 19010OQ788985OQ789006OR469108Present studyNeohypochnicium murinumCLZhao 19020OQ788986OQ789006Present studyNeohypochnicium murinumCLZhao 19020OQ788986OQ789006Present studyNeohypochnicium murinumCLZhao 19020OQ788986OQ789006Present studyNeohypochnicium murinumCLZhao 19125OQ788986OQ789080OR469110Present s		huinayense									
huinayense NeohypochniciumMA-Fungi 79155FN552355JN939579Telleria et al. (2010a)micheliiNeohypochniciumGG-GUY13-100KY019170Gruhn et al. (2017)NeohypochniciumGG-GUY12-101KY019170Gruhn et al. (2017)NeohypochniciumGG-GUY12-101KY019171Gruhn et al. (2017)NeohypochniciumGLZhao 6855OQ788983Present studyNeohypochniciumCLZhao 19012*OQ788986OQ789004OR469108OR541916Present studyNeohypochniciumCLZhao 19020OQ788986OQ789006Present studyNeohypochniciumCLZhao 19021OQ788986OQ789007OR469110Present studyNeohypochniciumCLZhao 19031OQ788987OQ789007OR469110Present studyNeohypochniciumCLZhao 19067OQ788988OQ789008OR469110Present studyNeohypochniciumCLZhao 19125OQ788989-OR469112Present studyNeohypochniciumCLZhao 19125OQ788989-OR469112Present studyNeohypochniciumCLZhao 19129OQ788989 <td< td=""><td></td><td>Neohypochnicium</td><td>MA-Fungi:13980</td><td>HG326616</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>Maekawa et al. (2023)</td></td<>		Neohypochnicium	MA-Fungi:13980	HG326616	_	_	_	_	_	Maekawa et al. (2023)	
Neohypochnicium micheliiMA-Fungi 79155FN552535JN939579Telleria et al. (2010a)Neohypochnicium microsporumGG-GUY13-100KY019170Gruhn et al. (2017)Neohypochnicium microsporumGG-GUY12-101KY019171Gruhn et al. (2017)Neohypochnicium microsporumGG-GUY12-101KY019171Gruhn et al. (2017)Neohypochnicium murinumCLZhao 6855OQ788983Present studyNeohypochnicium murinumCLZhao 19012*OQ788984OQ789004OR469108OR541916Present studyNeohypochnicium murinumCLZhao 19017OQ788985OQ789005OR469109Present studyNeohypochnicium murinumCLZhao 19020OQ788986OQ789006Present studyNeohypochnicium murinumCLZhao 19031OQ788987OQ789007OR469110Present studyNeohypochnicium murinumCLZhao 19125OQ788988-OR469111Present studyNeohypochnicium murinumCLZhao 19125OQ788989-OR469112OR541919Present studyNeohypochnicium murinumCLZhao 19125OQ788980-OR469113Present		huinayense									
michelii NeohypochniciumGG-GUY13-100KY019170Cruhn et al. (2017)NeohypochniciumGG-GUY12-101KY019171Gruhn et al. (2017)NeohypochniciumGG-GUY12-101KY019171Gruhn et al. (2017)NeohypochniciumCLZhao 6855OQ788983Present studyNeohypochniciumCLZhao 19012*OQ788984OQ789005OR469108OR541916Present studyNeohypochniciumCLZhao 19017OQ788985OQ789005OR469109OR541917Present studyNeohypochniciumCLZhao 19020OQ788986OQ789006Present studyNeohypochniciumCLZhao 19021OQ788987OQ789007OR469110Present studyNeohypochniciumCLZhao 19031OQ788987OQ789007OR469110Present studyNeohypochniciumCLZhao 19025OQ788989-OR469111Present studyNeohypochniciumCLZhao 19125OQ788989-OR469112Present studyNeohypochniciumCLZhao 19129OQ788989-OR469113Present studyNeohypochniciumCLZhao 19129OQ788990-OR469113-		Neohypochnicium	MA-Fungi 79155	FN552535	JN939579	_	_	-	-	Telleria et al. (2010a)	
Neohypochnicium microsporumGG-GUY13-100KY019170Gruhn et al. (2017)Neohypochnicium microsporumGG-GUY12-101KY019171Gruhn et al. (2017)Neohypochnicium murinumCLZhao 6855OQ788983Present studyNeohypochnicium murinumCLZhao 19012 *OQ788984OQ789004OR469108OR541916Present studyNeohypochnicium murinumCLZhao 19017OQ788985OQ789005OR469109OR541917Present studyNeohypochnicium murinumCLZhao 19020OQ788986OQ789006OR469109Present studyNeohypochnicium murinumCLZhao 19020OQ788987OQ789007OR469110Present studyNeohypochnicium murinumCLZhao 19031OQ788987OQ789008OR469111Present studyNeohypochnicium murinumCLZhao 19125OQ788989-OR469111Present studyNeohypochnicium murinumCLZhao 19125OQ788989-OR469112OR541919Present studyNeohypochnicium murinumCLZhao 19129OQ788990-OR469113OR541920Present studyNeohypochnicium murinumCLZhao 19129OQ788990-OR469113OR54		michelii									
Microsporum Neohypochnicium nicrosporumGG-GUY12-101KY019171Gruhn et al. (2017)Neohypochnicium nurinumCLZhao 6855QQ788983Present studyNeohypochnicium nurinumCLZhao 19012*QQ788984QQ789004QR469108OR541916Present studyNeohypochnicium nurinumCLZhao 19017QQ788985QQ789005QR469109OR541917Present studyNeohypochnicium nurinumCLZhao 19020QQ788986QQ789006OR541917Present studyNeohypochnicium nurinumCLZhao 19020QQ788986QQ789006Present studyNeohypochnicium nurinumCLZhao 19021QQ788987QQ789007QR469110Present studyNeohypochnicium nurinumCLZhao 19067QQ788988QQ789008QR469110Present studyNeohypochnicium nurinumCLZhao 19125QQ788989-OR469111Present studyNeohypochnicium nurinumCLZhao 19125QQ788989-OR469112OR541919Present studyNeohypochnicium nurinumCLZhao 19129QQ788990-OR469113OR541920Present studyNeohypochnicium nurinumCLZhao 19129QQ788990-OR469113OR541920 <td></td> <td>Neohypochnicium</td> <td>GG-GUY13-100</td> <td>KY019170</td> <td>-</td> <td>-</td> <td>-</td> <td>_</td> <td>-</td> <td>Gruhn et al. (2017)</td>		Neohypochnicium	GG-GUY13-100	KY019170	-	-	-	_	-	Gruhn et al. (2017)	
Neohypochnicium microsporumGG-GU Y12-101KY019171		microsporum	CC CUV12 101	121/010171							
Microsportum Neohypochnicium murinumCLZhao 6855QQ788983Present studyNeohypochnicium murinumCLZhao 19012 *QQ788984QQ789004OR469108OR541916Present studyNeohypochnicium murinumCLZhao 19017OQ788985OQ789005OR469109OR541917Present studyNeohypochnicium murinumCLZhao 19020OQ788986OQ789006Present studyNeohypochnicium murinumCLZhao 19020OQ788986OQ789007OR469110Present studyNeohypochnicium murinumCLZhao 19031OQ788987OQ789007OR469110Present studyNeohypochnicium murinumCLZhao 19067OQ788988OQ789008OR469111Present studyNeohypochnicium murinumCLZhao 19125OQ788989-OR469112OR541919Present studyNeohypochnicium murinumCLZhao 19129OQ788980-OR469113OR541920Present study		Neohypochnicium	GG-GUY12-101	KY0191/1	-	-	-	-	_	Gruhn et al. (2017)	
Neohypochnicium murinumCLZhao 19012 * OQ788984OQ789904 OQ788984OR469108 OR469109OR541916 OR541917Present studyNeohypochnicium murinumCLZhao 19017OQ788985 OQ788985OQ789005 OQ789006OR469109 OR541917 Present studyNeohypochnicium murinumCLZhao 19020OQ788986 OQ788986OQ789006 OQ789006Present studyNeohypochnicium murinumCLZhao 19020OQ788987 OQ788987OQ789007 OQ789007OR469110 OR469110Present studyNeohypochnicium murinumCLZhao 19031OQ788987 OQ788988OQ789008 OQ789008OR469111 ORPresent studyNeohypochnicium murinumCLZhao 19125OQ788989 OQ788989OQ8469112 OR469112OR541919 Present studyNeohypochnicium murinumCLZhao 19125OQ788990 OQ788989-OR469112 OR469113OR541919 Present study		microsporum Neohypochnicium	CI 7hao 6855	00788083						Present study	
Minimum Neohypochnicium murinumCLZhao 19012 * OQ788984OQ78904 		тигіпит		00/00/05	_	_	-	_	_	Tresent study	
NeohypochniciumCLZhao 19017OQ788985OQ789005OR469109OR541917Present studyNeohypochniciumCLZhao 19020OQ788986OQ789006Present studyNeohypochniciumCLZhao 19020OQ788986OQ789006Present studyNeohypochniciumCLZhao 19031OQ788987OQ789007OR469110OR541918Present studyNeohypochniciumCLZhao 19067OQ788988OQ789008OR469111Present studyNeohypochniciumCLZhao 19125OQ788989-OR469112OR541919Present studyNeohypochniciumCLZhao 19129OQ788980-OR469113OR541920Present studyNeohypochniciumCLZhao 19129OQ788990-OR469113OR541920Present study		Neohypochnicium	CLZhao 19012 *	00788984	00789004	OR469108	_	_	OR541916	Present study	
Neohypochnicium murinumCLZhao 19017OQ788985OQ789005OR469109OR541917Present studyNeohypochnicium murinumCLZhao 19020OQ788986OQ789006Present studyNeohypochnicium murinumCLZhao 19031OQ788987OQ789007OR469110OR541918Present studyNeohypochnicium murinumCLZhao 19067OQ788988OQ789008OR469111Present studyNeohypochnicium murinumCLZhao 19125OQ788989-OR469112Present studyNeohypochnicium murinumCLZhao 19129OQ788990-OR469113OR541919Present studyNeohypochnicium murinumCLZhao 19129OQ788990-OR469113OR541910Present study		murinum		C 2.00701		011.07100			010 12/10		
murinum Neohypochnicium murinumCLZhao 19020OQ788986OQ789006Present studyNeohypochnicium murinumCLZhao 19031OQ788987OQ789007OR469110OR541918Present studyNeohypochnicium murinumCLZhao 19067OQ788988OQ789008OR469111Present studyNeohypochnicium murinumCLZhao 19067OQ788988OQ789008OR469111Present studyNeohypochnicium murinumCLZhao 19125OQ788989-OR469112OR541919Present studyNeohypochnicium murinumCLZhao 19129OQ788990-OR469113OR541920Present study		Neohypochnicium	CLZhao 19017	OQ788985	OQ789005	OR469109	_	_	OR541917	Present study	
Neohypochnicium murinumCLZhao 19020OQ788986OQ789006Present studyNeohypochnicium murinumCLZhao 19031OQ788987OQ789007OR469110OR541918Present studyNeohypochnicium murinumCLZhao 19067OQ788988OQ789008OR469111Present studyNeohypochnicium murinumCLZhao 19125OQ788989-OR469112Present studyNeohypochnicium murinumCLZhao 19129OQ788990-OR469113OR541919Present studyNeohypochnicium murinumCLZhao 19129OQ788990-OR469113OR541920Present study		murinum		-	-					·	
murinumNeohypochnicium murinumCLZhao 19031OQ788987OQ789007OR469110OR541918Present studyNeohypochnicium murinumCLZhao 19067OQ788988OQ789008OR469111Present studyNeohypochnicium murinumCLZhao 19125OQ788989-OR469112Present studyNeohypochnicium murinumCLZhao 19129OQ788990-OR469113OR541919Present studyNeohypochnicium murinumCLZhao 19129OQ788990-OR469113OR541920Present study		Neohypochnicium	CLZhao 19020	OQ788986	OQ789006	-	_	_	_	Present study	
Neohypochnicium murinumCLZhao 19031OQ788987OQ789007OR469110OR541918Present studyNeohypochnicium murinumCLZhao 19067OQ788988OQ789008OR469111Present studyNeohypochnicium murinumCLZhao 19125OQ788989-OR469112OR541919Present studyNeohypochnicium murinumCLZhao 19129OQ788990-OR469113OR541920Present studymurinum murinum-OQ788990-OR469113OR541920Present study		murinum									
murinumNeohypochniciumCLZhao 19067OQ788988OQ789008OR469111Present studymurinumNeohypochniciumCLZhao 19125OQ788989-OR469112OR541919Present studymurinumNeohypochniciumCLZhao 19129OQ788990-OR469113OR541920Present studymurinummurinum-OR469113OR541920Present study		Neohypochnicium	CLZhao 19031	OQ788987	OQ789007	OR469110	-	_	OR541918	Present study	
Neohypochnicium CLZhao 19067 OQ788988 OQ789008 OR469111 – – – – Present study murinum Neohypochnicium CLZhao 19125 OQ788989 – OR469112 – – OR541919 Present study murinum Neohypochnicium CLZhao 19129 OQ788990 – OR469113 – – OR541920 Present study murinum		murinum		0.0-00000	0.0-00000						
murinum Neohypochnicium CLZhao 19125 OQ788989 – OR469112 – – OR541919 Present study murinum Neohypochnicium CLZhao 19129 OQ788990 – OR469113 – – OR541920 Present study murinum		Neohypochnicium	CLZhao 19067	OQ788988	OQ789008	OR469111	-	_	_	Present study	
Neohypochnicium CLZhao 19125 OQ788989 – OR469112 – – OR541919 Present study murinum Neohypochnicium CLZhao 19129 OQ788990 – OR469113 – – OR541920 Present study murinum		murinum Na a hava a shari si sana	CI 7haa 10125	0070000		004(0112			OD 5 41010	Duccont stade	
Neohypochnicium CLZhao 19129 OQ788990 – OR469113 – – OR541920 Present study murinum		weonypocnnicium	CLZ11a0 19125	UQ100909	_	UK409112	-	_	UK341919	r resent study	
murinum		murmum Neohynochnicium	CL Zhao 19120	00788990	_	OR469113	_	_	OR541920	Present study	
		murinum		54/00/70	-	011-07113	-	—	01071/20	i reșent study	

Order/Family	Species name S	Sample no.		References					
v	•	•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	_
	Neohypochnicium patagonicum	GB:0129149	HG000304	_	_	_	_	-	Maekawa et al. (2023)
	Neohypochnicium perlongicystidiosum	TUMH:40397	LC663679	LC663690	_	_	_	-	Maekawa et al. (2023)
	Neohypochnicium perlongicystidiosum	TUMH:63618	LC663675	_	_	_	-	-	Maekawa et al. (2023)
	Neoheohypochnicium pini	TUMH:61221	LC663680	LC663691	_	_	-	-	Maekawa et al. (2023)
	Neoheohypochnicium pini	F0023763	KC282471	_	_	_	-	-	Jang et al. (2013)
	Neohypochnicium punctulatum	FP 101698	KY948827	KY948860	_	KY948932	_	-	Justo et al. (2017)
	Neohypochnicium punctulatum	NH 7815	AF429408	_	_	_	-	-	Paulus et al. (2007)
	Neohypochnicium	KHL 11968	JN710546	_	_	_	_	-	Maekawa et al. (2023)
	Neohypochnicium subrigescens	NH 10421	AF429427	_	_	_	_	-	Telleria et al. (2010a)
	Neohypochnicium velutinum	CLZhao 18084	OQ789999	OQ788980	OR469114	_	-	OR541921	Present study
	Neohypochnicium velutinum	CLZhao 18085	OQ789000	_	OR469115	_	-	-	Present study
	Neohypochnicium velutinum	CLZhao 18101	OQ789001	_	OR469116	_	_	OR541922	Present study
	Neohypochnicium velutinum	CLZhao 18144 *	OQ789002	OQ788981	OR469117	_	_	OR541923	Present study
	Neohypochnicium wakefieldiae	KJM 271	KY948828	DQ677512	_	KY948933	_	-	Justo et al. (2017)
	Neohypochnicium wakefieldiae	NH 12107	AF429416	-	_	_	_	-	Paulus et al. (2007)
	Neohypochnicium yunnanense	CLZhao 18525 *	OQ789011	OQ789003	OR469118	_	-	-	Present study
	Neohypochnicium zixishanense	CLZhao 7270 *	OQ789009	OQ788991	OR469119	_	_	OR541924	Present study
-/Panaceae	Cymatoderma elegans	Dai 17511 OMC 1427	ON417155 KV948826	ON417205 KY948872	_	- KY948071	_	-	Liu et al. (2022b) Justo et al. (2017)

Order/Family	Species name	Sample no.			GenBank ac	cessions no.			References
U			ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	_
	Panus conchatus	Dai 23421	ON417176	ON417226	ON417088	ON424716	ON424794	ON424855	Liu et al. (2022b)
	Panus fragilis	HHB 11042	KP135328	KP135233	-	KP134877	-	-	Floudas & Hibbett (2015)
-/Phanerochaetaceae	Bjerkandera adusta	HHB-12826-Sp	KP134983	KP135198	-	KP134784	KP134913	KT305938	Floudas & Hibbett (2015)
	Bjerkandera centroamericana	L-13104-sp	KY948791	KY948855	_	KY948936	-	_	Justo et al. (2017)
	Donkia pulcherrima	GC 1707-11	LC378994	LC379152	_	LC379157	LC387351	LC387371	Chen et al. (2018)
	Donkia pulcherrima	Gothenburg-2022	KX752591	KX752591	_	_	_	_	Miettinen et al. (2016)
	Donkiella yunnanensis	CLZhao 3931 *	OR094482	OR461467	OR548142	OR531377	OR733285	OR541925	Present study
	Donkiella yunnanensis	CLZhao 18292	OR094483	OR461468	OR548143	_	OR733286	OR541926	Present study
	Geliporus exilisporus	GC 1702-15	LC378995	LC379153	_	LC379158	LC387352	LC387372	Chen et al. (2018)
	Hapalopilus rutilans	FP-102473-Sp	MZ636981	MZ637142	_	MZ748407	OK136004	MZ913723	Chen et al. (2021)
	Hyphodermella corrugata	MA-Fungi 24238	FN600378	JN939586	-	-	-	-	Telleria et al. (2010b)
	Hyphodermella laevigata	He 5427	ON964013	ON963996	_	-	-	-	Li et al. (2023a)
	Hyphodermella tropica	He 3993	ON964011	ON963994	_	_	_	_	Li et al. (2023a)
	Odontoefibula orientalis	Wu 0910-57	LC363490	LC363495	_	LC363501	LC387362	LC387381	Chen et al. (2018)
	Odontoefibula orientalis	GC 1703-76	LC379004	LC379156	_	LC379161	LC387360	LC387379	Chen et al. (2018)
	Oxychaete cervinogilva	Dmitry Schigel 5216	KX752596	KX752596	_	KX752626	-	-	Miettinen et al. (2016)
	Oxychaete cervinogilva	GC 1501-16	MZ422783	MZ637173	_	_	_	MZ913613	Chen et al. (2021)
	Phaeophlebiopsis caribbeana	HHB-6990	KP135415	KP135243	_	KP134810	KP134931	MZ913643	Chen et al. (2021)
	Phaeophlebiopsis himalavensis	Chen 3143	MZ637013	MZ637174	-	MZ748359	OK135992	MZ913633	Chen et al. (2021)
	Phaeophlebiopsis ravenelii	FCUG 2126	MZ637015	GQ470675	_	MZ748361	OK135993	MZ913634	Liu et al. (2023a)
	Phanerina mellea	WEI 17-224	LC387333	LC387340	_	LC387345	LC387363	LC387382	Chen et al. (2018)
	Phanerina mellea	Wu 1010-34	MZ422784	MZ637176	_	_	_	_	Chen et al. (2021)
	Phanerochaete aculeata	Wu 880701-2	MZ422787	GO470636	_	MZ748380	OK136008	MZ913593	Chen et al. (2021)
	Phanerochaete albida	GC 1407-14	MZ422788	MZ637179	_	MZ748384	OK136013	MZ913704	Chen et al. (2021)
	Phanerochaete alnea	FP 151125	KP135177	MZ637181	_	MZ748385	OK136014	MZ913641	Liu et al. $(2023a)$
	Phanerochaete alpina	Wu 1308–61	MZ422790	MZ637182	_	MZ748394	OK136022	MZ913598	Chen et al. (2021)
	Phanerochaete arizonica	RLG-10248-Sp	KP135170	KP135239	-	KP134830	KP134949	_	Floudas & Hibbett (2015)

Order/Family	Species name	Sample no.			GenBank accessions no.				References
·		•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	—
	Phanerochaete australis	GC 1505-15	MZ422792	MZ637184	_	MZ748381	OK136010	MZ913595	Chen et al. (2021)
	Phanerochaete	Wu 0707-2	MF399404	MF399395	-	LC314324	OK136009	MZ913594	Chen et al. (2021)
	bambusicola								
	Phanerochaete	Wu 9211-105	MZ422795	GQ470641	-	MZ748387	OK136018	MZ913640	Chen et al. (2021)
	canolutea								
	Phanerochaete	PC139	MZ422797	MZ637186	-	MZ748405	OK136036	MZ913606	Chen et al. (2021)
	chrysosporium	FD 105205							
	Phanerochaete	FP-105385	KP135100	KP135234	_	KP134824	KP134941	MZ913602	Chen et al. (2021)
	citrinosanguinea	WI 1107 53	NG 400700	NG(27107		N7740202	01/12/011	MERO12506	C I (2021)
	Phanerochaete	Wu 1107-53	MZ422799	MZ63/18/	-	MZ/48382	OK136011	MZ913596	Chen et al. (2021)
	concrescens	CC 1400 7	M740000	M7627190		M7749404	OV126022	M7012607	Char at al. (2021)
	rnanerocnaele	GC 1409-7	NIZ422805	MZ03/189	_	MLZ/46404	OK150055	MZ913007	Cheff et al. (2021)
	Phanerochaete	GC 1708-358	LC412096	I C412101	_	I C412107	OK136025	M7013500	Chen et al. (2021)
	cystidiata	001700-550	LC+12070	LC+12101		LC+12107	01130023	WIZ)15577	Cheff et al. (2021)
	Phanerochaete ericina	HHB-2288	KP135167	KP135247	_	KP134834	KP134950	_	Floudas & Hibbett
	Thank ochacle crienta	11110 2200	M 155107	111155217		111151051	H 15 1950		(2015)
	Phanerochaete fusca	Wu 1409-161	LC412098	LC412105	_	LC412109	OK136028	_	Chen et al. (2021)
	Phanerochaete	RLG-10834-Sp	MZ422806	MZ637192	_	MZ748396	OK136029	MZ913603	Chen et al. (2021)
	fuscomarginata	1							
	Phanerochaete	Wu 9210-57	MZ422810	MZ637196	_	MZ748406	OK136035	_	Chen et al. (2021)
	granulata								
	Phanerochaete laevis	Wu 0309-40	MZ422818	GQ470655	-	MZ748397	OK136026	MZ913605	Chen et al. (2021)
	Phanerochaete	GC 1612-11	MZ422819	MZ637204	_	MZ748383	OK136012	MZ913597	Chen et al. (2021)
	livescens								
	Phanerochaete	CLZhao 2357 *	OR096190	OR461450	OR469120	OR683153	OR733287	OR541927	Present study
	mopanshanensis								~
	Phanerochaete	Wu 880313-6	MZ422823	GQ470654	_	MZ748395	OK136027	MZ913612	Chen et al. (2021)
	parmastoi	W 1707 110	N7400007	N7C27211		M7740201	0112(010	M7012626	Characterit (2021)
	Phanerochaete	wu1/0/-112	MZ422827	MZ63/211	_	MZ/48391	OK136019	MZ913636	Chen et al. (2021)
	rnizomorpna Bhananachaeta	ED 250	VD125122	VD125245		VD124070	VD124044		Floudes & Hibbett
	1 nunerochuele	TD-339	Kr155122	KF 155245	-	KF 134020	KI 134944	-	(2015)
	Phanerochaete	CI Zh ao 4447	MK343613	_	_	_	_	_	(2013) Present study
	sanguinpacarnasa		1111375015						i resent study
	Phanerochaete	CLZhao 4634	MK343614	_	_	_	_	_	Present study
	sanguineocarnosa								

Order/Family	Species name	Sample no.					References		
·	-	•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	—
	Phanerochaete	CLZhao 4639	MK343615	_	_	_	_	_	Present study
	sanguineocarnosa								
	Phanerochaete	CLZhao 4691	MK795174	_	-	-	-	-	Present study
	sanguineocarnosa								
	Phanerochaete sordida	GC 1708-162	MZ422828	MZ637212	-	MZ748388	OK136016	MZ913637	Chen et al. (2021)
	Phanerochaete sordida	Wu 1109-55	MZ422829	MZ637213	-	MZ748389	OK136017	MZ913638	Chen et al. (2021)
	Phanerochaete stereoides	Lin 523	MZ422838	MZ637220	_	MZ748400	OK136032	MZ913600	Chen et al. (2021)
	Phanerochaete subcarnosa	Wu 9310-3	MZ422841	GQ470642	_	MZ748399	OK136024	MZ913604	Chen et al. (2021)
	Phanerochaete taiwaniana	Wu 880824-17	MZ422842	GQ470666	-	MZ748393	OK136021	MZ913610	Chen et al. (2021)
	Phanerochaete thailandica	Wu 1710-3	MZ422843	MZ637223	-	MZ748401	OK136031	MZ913601	Chen et al. (2021)
	Phanerochaete velutina	GC 1604-56	MZ422844	MZ637224	_	MZ748386	OK136015	MZ913642	Chen et al. (2021)
	Phlebiopsis alba	GC 1508-110	MZ637042	MZ637246	_	MZ748368	OK135994	MZ913620	Chen et al. (2021)
	Phlebiopsis brunneocystidiata	Chen 666	MT561707	GQ470640	_	MZ748372	OK135998	MZ913625	Chen et al. (2021)
	Phlebiopsis castanea	GC 1612-6	KY688208	MZ637250	_	MZ748375	OK136001	MZ913618	Chen et al. (2021)
	Phlebiopsis crassa	GC 1602-45	MZ637049	MZ637251	_	MZ748373	OK135999	MZ913626	Chen et al. (2021)
	Phlebiopsis	CLZhao 17984 *	OR096193	OR461451	_	_	OR733288	OR541928	Present study
	daweishanensis								·
	Phlebiopsis flavidoalba	GC 1807-47	MZ637050	MZ637254	_	MZ748378	OK136038		Chen et al. (2021)
	Phlebiopsis galochroa	FP-102937-Sp	KP135391	KP135270	_	KP134822	KP134929	MZ913621	Chen et al. (2021)
	Phlebiopsis gigantea	FCUG 1417	MZ637051	AF141634	_	MZ748370	OK135996	MZ913623	Liu et al. (2023a)
	Phlebiopsis laxa	Wu 9311-17	MT561710	GQ470649	_	MZ748374	OK136000	MZ913627	Chen et al. (2021)
	Phlebiopsis odontoidea	GC 1708-181	MZ637054	MZ637255	_	MZ748371	OK135997	MZ913624	Chen et al. (2021)
	Phlebiopsis pilatii	Wu 1707-18	MZ637056	MZ637257	_	MZ748376	OK136002	MZ913617	Chen et al. (2021)
	Phlebiopsis yushaniae	Chen 2358	MZ637047	MZ637261	_	MZ748377	OK136003	MZ913644	Chen et al. (2021)
	Pirex concentricus	OSC-41587	KP134984	KP135275	_	KP134843	KP134940	-	Floudas & Hibbett (2015)
	Porostereum fulvum	LY:18491	MG649452	MG649454	_	_	_	_	Chen et al. (2018)
	Porostereum spadiceum	Wu 9508-139	MZ637062	MZ637263	_	MZ748445	OK136067	MZ913697	Chen et al. (2018)
	Rhizochaete chinensis	Wu 0910-45	LC387335	MF110294	_	LC387348	LC387370	LC270925	Chen et al. (2021)
	Riopa metamorphosa	Spirin 2395	KX752601	KX752601	_	KX752628	_	_	Miettinen et al. (2016)
	Riopa pudens	Cui 3238	JX623931	JX644060	_	_	_	_	Jia et al. (2014)

Order/Family	Species name	Sample no.		References					
	•	•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	-
	Roseograndinia	CLZhao 7718	MZ305285	MZ305293	_	_	_	_	Wang et al. (2021a)
	zixisnanensis Roseograndinia aurantiaca	CLZhao 10487	MW209023	MW209012	-	-	-	-	Wang & Zhao (2021b)
	Roseograndinia jilinensis	Wu 1307-132	MZ637076	MZ637274	-	MZ748412	OK135984	MZ913631	Shen et al. (2023)
	Roseograndinia jilinensis	Wu 1307-137	MZ637077	MZ637275	-	MZ748413	OK135985	MZ913632	Shen et al. (2023)
	Terana caerulea	FP-104073	KP134980	KP135276	-	KP134865	KP134960	-	Floudas & Hibbett (2015)
	Terana caerulea	GC 1507-2	MZ637090	MZ637287	_	MZ748414	OK136037	MZ913654	Chen et al. (2021)
-/Podoscyphaceae	Abortiporus biennis	Cui 17845	ON417149	ON417197	ON417064	ON424663	ON424750	ON424821	Liu et al. (2022b)
••	Abortiporus biennis	Cui 16986	ON417150	ON417198	ON417065	ON424664	ON424751	ON424822	Liu et al. (2022b)
	Podoscypha tropica	140719–19	OQ305834	OQ305830	_	_	_	_	Si et al. (2023)
	Podoscypha venustula	Cui 16923	ON417181	ON417231	ON417089	ON424722	ON424799	ON424860	Liu et al. (2022b)
-/Polyporaceae	Polyporus squamosus	Cui 10595	KU189778	KU189809	KU189960	KU189892	KU189988	KU189925	Zhou et al. (2016)
	Polyporus varius	Cui 12249	KU507581	KU507583	KU507585	KU507589	KU507592	KU507591	Zhou et al. (2016)
	Trametes cinnabarina	Dai 14386	KX880629	KX880667	KX880712	KX880818	KX880854	KX880885	Cui et al. (2019)
	Trametes sanguinea	Cui 7091	KX880628	KX880666	KX880711	KX880817	MG867689	KX880884	Cui et al. (2019)
-/Postiaceae	Amaropostia hainanensis	Cui 13739	KX900909	KX900979	KX901053	KX901171	KX901223	-	Shen et al. (2019)
	Amaropostia stiptica	Cui 17037	OK045504	OK045510	OK045498	OK076902	OK076930	OK076958	Liu et al. (2022b)
	Calcipostia guttulata	Cui 10028	KF727433	KJ684979	KX901066	KX901182	KX901237	KX901277	Shen et al. (2019)
	Calcipostia guttulata	Cui 16281	OM039275	OM039175	OM039210	OM037747	OM037773	OM037797	Liu et al. (2022b)
	Cystidiopostia hibernica	Cui 17624	MW377277	MW377357	MW382064	MW337173	_	MW337105	Liu et al. (2022b)
	Cystidiopostia subhibernica	Cui 17095	MW377278	MW377358	MW382065	MW337174	MW337042	MW337106	Liu et al. (2022b)
	Postia lactea	Cui 17334	OM039287	OM039187	OM039222	OM037753	OM037782	OM037810	Liu et al. (2022b)
	Postia lactea	Cui 17790	OM039288	OM039188	OM039223	OM037754	OM037783	OM037811	Liu et al. (2022b)
-/Sarcoporiaceae	Sarcoporia polyspora	Cui 16977	MW377326	MW377403	_	MW337206	MW337079	MW337146	Liu et al. (2022b)
*	Sarcoporia polyspora	Cui 16995	OM039299	OM039199	_	OM037761	ON424811	OM037817	Liu et al. (2022b)
-/Sparassidaceae	Sparassis crispa	AFTOL ID 703	DQ250597	AY629321	_	_	DQ408122	DQ056289	Lutzoni et al. (2004)
-	Sparassis crispa	MBUH-DORISL ABER/ss25	AY218442	AY218404	_	_	_	_	Wang et al. (2004)
	Sparassis radicata	TENN 52558	AY218450	AY218411	_	_	AY218547	_	Wang et al. (2004)
	Sparassis radicata	OKM 4756	KC987580	KF053407	_	KY949023	_	_	Justo et al. (2017)

Order/Family	Species name	Sample no.		References					
-			ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
-/Steccherinaceae	Antella americana	KHL 11949	JN710509	JN710509	JN710656	_	_	JN710711	Miettinen et al. (2012)
	Antella niemelaei	Renvall 3218	AF126876	-	_	_	_	-	Johannesson et al. 2000
	Antrodiella faginea	KHL 11977	JN710514	JN710514	JN710658	_	_	JN710712	Miettinen et al. (2012)
	Antrodiella semisupina	Labrecque & Labbe ´ 372	JN710521	JN710521	-	-	-	_	Miettinen et al. (2012)
	Atraporiella neotropica	Ryvarden 44447	HQ659221	HQ659221	_	_	_	_	Miettinen et al. (2012)
	Atraporiella yunnanensis	CLZhao 604	MF962482	MF962485	MZ958849	_	OK000939	OK000966	Wu et al. (2017)
	Butyrea luteoalba	isolate 5403	JN710558	JN710558	JN710682	_	_	JN710719	Cao et al. (2021b)
	Butyrea japonica	isolate 10202	JN710556	JN710556	JN710680	_	_	JN710718	Cao et al. (2021b)
	Cabalodontia albofibrillosa	Sanyal 6903	KP401770	KP401770	_	_	_	-	Westphalen et al. (2021)
	Cabalodontia albofibrillosa	CLZhao 6394	MK838859	_	_	_	_	-	Present study
	Cabalodontia	CLZhao 8722	MZ713669	MZ713811	_	_	_	-	Present study
	albofibrillosa								•
	Cabalodontia delicata	MCW 564/17	MT849295	MT849295	_	MT833947	_	MT833934	Westphalen et al. (2021)
	Elaphroporia	CLZhao 595	MG231568	MG748854	_	_	_	-	Wu et al. (2018b)
	ailaoshanensis								
	Elaphroporia ailaoshanensis	CLZhao 596	MG231572	MG748855	-	-	-	-	Wu et al. (2018b)
	Etheirodon fimbriatum	KHL 11905	IN710530	IN710530	IN710667	_	_	_	Miettinen et al. (2012)
	Etheirodon fimbriatum	HR98811	MT849300	_	_	MT833955	_	MT833038	Westphalen et al. (2012)
	Etheirodon fimbriatum	CLZhao 8399	MK404503	MK404503	_	_	OK000953	-	Present study
	Etheirodon fimbriatum	CLZhao 10069	MZ713672	-	_	_	-	_	Present study
	Etheirodon fimbriatum	CL Zhao 10114	MZ713671	M 77 13841	MZ958870	_	_	OK000972	Present study
	Etheirodon fimbriatum	CLZhao 10114 CLZhao 13977	MZ713673	-	_	_	_	-	Present study
	Etheirodon purpureum	MCW 642/18	MT840301	MT840301	_	_	_	MT833030	Westphalen et al. (2021)
	Etheirodon roseoalhum	CI 7hao 24770 *	OR096187	OR461452	- OR469121	- OR683155	- OR701872	OR541929	Present study
	Etheirodon roseoalbum	CLZhao 24770 CLZhao 24003	OR090107	OR401452	OR409121 OR460122	OR683156	OR701872	01341727	Procent study
	Elleviporus brownii	Gates 22 V 2007	IN710538	IN710538	IN710670	-	-	– IN710715	Miettinen et al. (2012)
	Flaviporus liebmannii	Buyarden 44553	IN710540	IN710540	311/100/0	_	_	JI (710715	Miettinen et al. (2012)
	Frantisekia	RRNM 710170	FI496670	FI496728				_	Tomšovský et al. (2012)
	n nunuseria montschulonsis		1 3420070	1.1420120	I J+207+0				1011150v5ky ct al. (2010)
	menischulensis Frantisakia fissiliformis	CBS 136 72	MH860521	MH872222	A E087446				Vu et al. (2010)
	In anusekia jissiiijoimis	Miettinen 12852 1	INIT1000321	INITIO/2232	IN710678	_	_	_	Miettinen et al. (2017)
	Junghuhnia Crusiacea Junghuhnia	Vuan 6160	ME130551	J1N/10333	J1N/100/0	_	_	_	Vuan et al. (2012)
	pseudocrustacea	1 dall 0100	WII 137331	_	-			-	1 uaii 01 al. (2017)

Order/Family	Species name	Sample no.		References					
·	•		ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
	Loweomyces fractipes	Setliff 19.8.2007	JN710569	JN710569	JN710689	_	_	_	Miettinen et al. (2012)
	Loweomyces	MCW 366/12	KX378870	KX378870	_	_	_	_	Westphalen et al. (2016)
	tomentosus								
	Metuloidea	X449	JN710588	JN710588	_	_	—	_	Westphalen et al. (2019)
	murashkinsky								
	Metuloidea reniforme	MCW 542/17	MT849303	MT849303	_	MT833950	_	MT833940	Westphalen et al. (2021)
	Metuloidea rhinocephala	X460	JN710562	JN710562	_	_	—	_	Westphalen et al. (2019)
	Mycorrhaphium adustum	KHL 12255	JN710573	JN710573	JN710692	_	_	JN710727	Miettinen et al. (2012)
	Mycorrhaphium	MCW 429/13	MH475307	MH475307	_	_	MH475313	MH475318	Westphalen et al. (2019)
	hispidum								
	Nigroporus vinosus	Yuan12916	MT681923	MT675108	_	_	MT793116	MT793113	Cao et al. (2021b)
	Nigroporus vinosus	Seitzman 2008-	JN710575	JN710575	JN710693	_	_	JN710728	Miettinen et al. (2012)
		100							
	Nigroporus sp.	CLZhao 4067	OR167780	_	OR469123	_	OR701865	_	Present study
	Nigroporus sp.	CLZhao 4767	OR167781	_	OR469124	_	_	_	Present study
	Nigroporus sp.	CLZhao 4768	_	OR461454	OR469125	_	_	_	Present study
	Steccherinum bourdotii	HR102002	MT849310	_	_	MT833953	_	MT833946	Westphalen et al. (2021)
	Steccherinum	CLZhao 4247	MK343649	_	_	_	_	_	Present study
	confragosum								
	Steccherinum larssonii	MCW 593/17	MT849306	MT849306	_	MT833956	_	MT833941	Westphalen et al. (2021)
	Steccherinum	CLZhao 24988 *	OR096196	OR461455	OR469126	OR683157	OR701866	OR541930	Present study
	lincangense								
	Steccherinum	CLZhao 26243 *	OR096195	_	OR469127	OR683158	OR701867	OR541931	Present study
	longiaculeiferum								
	Steccherinum	CLZhao 26290	OR167202	_	OR469128	OR683154	OR701868	OR541932	Present study
	longiaculeiferum								-
	Steccherinum	Cui 16691	ON417195	ON417247	_	ON424743	ON424817	ON424882	Liu et al. (2022b)
	meridionale								
	Steccherinum ochraceum	KHL 11902	JN710590	JN710590	JN710700	_	JN710738	JN710730	Miettinen et al. (2012)
	Steccherinum ochraceum	isolate 2060	JN710589	JN710589	_	_	_	_	Miettinen et al. (2012)
	Steccherinum	CLZhao 11059	OP799390	OP799377	_	_	_	_	Dong et al. (2023b)
	subtropicum								
	Steccherinum tenue	KHL 12316	JN710598	JN710598	JN710705	_	JN710739	JN710733	Miettinen et al. (2012)
	Steccherinum	CLZhao 3153	MW204582	MW204571	MZ958881	OK000932	_	_	Wu et al. (2021b)
	tenuissimum								
	Steccherinum	CLZhao 24911 *	OR096207	OR461456	OR469129	_	OR701869	OR541933	Present study
	weishanense								-

Order/Family	Species name	Sample no.		References					
-	_	-	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
	Steccherinum	CLZhao 4479	MW204586	MW204575	_	_	_	_	Wu et al. (2021b)
	xanthum								
	Steccherinum	CLZhao 1445	MW290042	MW290056	MZ958889	_	_	OK000984	Dong et al. (2022)
	yunnanense								
	Trullella conifericola	Yuan 12657	MT269761	MT259327	_	_	_	MT793110	Cao et al. (2021b)
	Trullella dentipora	Ryvarden 40822	JN710512	JN710512	_	_	_	_	Miettinen et al. (2012)
	Xanthoporus syringae	X339	JN710606	JN710606	-	_	-	-	Miettinen et al. (2012)
	Xanthoporus syringae	Jeppson 2264	JN710607	JN710607	_	_	_	_	Miettinen et al. (2012)
-/Taiwanofungaceae	Taiwanofungus camphoratus	Cui 17234	MW377327	MW377404	MW382104	ON424747	_	MW337147	Liu et al. (2022b)
	Taiwanofungus	B 147	EU232202	EU232278	-	_	-	-	Ortiz-Santana et al.
	salmoneus								(2013)
Russulales/	Artomyces adrienneae	TFB 8291	KY352645	-	_	-	MF978329	-	Unpublished
Auriscalpiaceae									
	Artomyces adrienneae	7387	AF454418	_	_	_	_	-	Lickey et al. (2003)
	Artomyces	7153	AF454408	_	_	_	_	-	Lickey et al. (2003)
	austropiperatus								
	Artomyces	8335	AF454407	_	_	_	_	-	Lickey et al. (2003)
	austropiperatus								
	Artomyces candelabrus	ICMP: 16999	GQ411509	_	_	-	_	-	Fukami et al. (2010)
	Artomyces candelabrus	3922	AF454420	_	_	-	_	-	Lickey et al. (2003)
	Artomyces carolinensis	1615	AF454409	_	_	-	_	-	Lickey et al. (2003)
	Artomyces colensoi	2807	AF454424	-	-	-	-	-	Lickey et al. (2003)
	Artomyces colensoi	2679	AF454423	-	-	-	-	-	Lickey et al. (2003)
	Artomyces costaricensis	7900	AF454411	-	-	-	-	-	Lickey et al. (2003)
	Artomyces costaricensis	9670	AF454410	-	-	-	-	-	Lickey et al. (2003)
	Artomyces cristatus	GB1701	AF454421	-	-	-	-	-	Lickey et al. (2003)
	Artomyces cristatus	DL8974	AF454422	-	-	-	-	-	Lickey et al. (2003)
	Artomyces dichotomus	DED722	AF454406	-	-	-	-	-	Lickey et al. (2003)
	Artomyces microsporus	ZRL2015014	LT716081	KY418906	-	KY418986	KY419042	-	Unpublished
	Artomyces microsporus	2349	AF336138	_	_	-	-	-	Lickey et al. (2003)
	Artomyces niveus	CLZhao 18346	OR094477	OR461457	OR469130	-	-	-	Present study
	Artomyces niveus	CLZhao 18996	OR094478	OR461458	OR469131	OR703806	OR700201	-	Present study
	Artomyces niveus	CLZhao 19094 *	OR094479	OR461459	OR469132	-	-	-	Present study
	Artomyces nothofagi	MES559	KP025706	-	_	_	-	-	Kneal & Smith (2015
	Artomyces novae- zelandiae	7024	AF454416	-	-	-	-	-	Lickey et al. (2003)

Order/Family	Species name	Sample no.		References					
		-	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	—
	Artomyces novae-	2672	AF454417	_	_	_	_	_	Lickey et al. (2003)
	zelandiae								-
	Artomyces piperatus	5770	AF454404	_	_	_	_	_	Lickey et al. (2003)
	Artomyces piperatus	8221	AF454405	_	_	_	_	_	Lickey et al. (2003)
	Artomyces pyxidatus	KA12-0342	KR673419	_	_	_	_	_	Kim et al. (2015)
	Artomyces pyxidatus	KA12-1374	KR673584	_	_	_	_	_	Kim et al. (2015)
	Artomyces stephenii	9433	AF454425	_	_	_	_	_	Lickey et al. (2003)
	Artomyces stephenii	11022	AF454426	_	_	_	_	_	Lickey et al. (2003)
	Artomyces tasmaniensis	3979	AF454412	_	_	_	_	_	Lickey et al. (2003)
	Artomyces tasmaniensis	3905	AF454413	_	_	_	_	_	Lickey et al. (2003)
	Artomyces turgidus	2682	AF454401	_	_	_	_	_	Lickey et al. (2003)
	Artomyces turgidus	2651	AF454402	_	_	_	_	_	Lickey et al. (2003)
	Artomyces yunnanensis	CLZhao 7052	OR094475	OR461460	OR469133	OR703807	OR700202	_	Present study
	Artomyces yunnanensis	CLZhao 7118 *	OR094476	OR461461	OR469134	OR703808	OR700203	_	Present study
	Lentinellus sublineolatus	TENN 059307	NR119505	_	_	_	_	-	Schoch et al. (2014)
	Lentinellus vulpinus	7267	AY513230	_	_	_	_	_	Kneal & Smith (2015)
-/Bondarzewiaceae	Heterobasidion	Dai 20962	ON417163	ON417213	ON417079	ON424698	ON424776	ON529284	Liu et al. (2022b)
	annosum								
-/Echinodontiaceae	Amylostereum chailletii	NH 8031	AF506406	AF506406	_	_	_	_	Larsson & Larsson
	5								(2003)
	Amylostereum	NH 12863	AF506407	AF506407	_	_	_	_	Larsson & Larsson
	laevigatum								(2003)
-/Peniophoraceae	Asterostroma laxum	EL33-99	AF506410	AF506410	_	_	_	_	Larsson & Larsson
1									(2003)
	Asterostroma muscicola	KHL9537	AF506409	AF506409	_	_	_	_	Larsson & Larsson
									(2003)
	Baltazaria galactina	CBS 752.86	MH862034	MH873721	_	_	_	_	Vu et al. (2019)
	Baltazaria neogalactina	CBS 755.86	MH862037	MH873724	_	_	_	_	Vu et al. (2019)
	Dichostereum durum	CBS 707.81	MH861450	MH873192	_	_	_	_	Vu et al. (2019)
	Gloiothele lactescens	EL8-98	AF506453	AF506453	_	_	_	_	Larsson & Larsson
									(2003)
	Gloiothele lamellosa	KHL11031	AF506454	AF506454	_	_	_	_	Larsson & Larsson
									(2003)
	Lachnocladium	KM49740	MH260033	MH260051	_	_	_	_	Leal-Dutra et al. (2018)
	schweinfurthianum								
	Lachnocladium sp.	KHL10556	AF506461	AF506461	_	_	_	_	Larsson & Larsson
				11200101					(2003)

Order/Family	Species name	Sample no.		References					
		•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
	Peniophora quercina	CBS 407.50	MH856687	MH868204	_	_	_	_	Vu et al. (2019)
	Peniophora tristicula	He 4775	MH669235	MH669239	_	_	-	-	Liu & He (2018)
	Peniophora versiformis	He 3029	MK588756	MK588796	_	_	-	-	Xu et al. (2023)
	Scytinostroma alutum	CBS:766.81	MH861486	MH873225	_	_	-	-	Vu et al. (2019)
	Scytinostroma alutum	CBS 762.81	NR170738	MH873221	AF393150	_	DQ408130	-	Vu et al. (2019)
	Scytinostroma artocreas	GHL-2016-Oct	MH204688	MH204691	_	_	_	-	Liu et al. (2018)
	Scytinostroma beijingense	He 7768	OQ731943	OQ729731	_	_	_	_	Li et al. (2023b)
	Scytingense Scytinostroma boidinii	He 5138	MK625572	MK625497	_	_	_	_	Li et al. (2023b)
	Scytinostroma boidinii	He 6911	00731934	00729724	_	_	_	_	Li et al. $(2023b)$
	Scytinostroma caudisporum	CBS 746.86	MH862030	NG073580	AY293270	-	_	-	Binder et al. (2005
	Scytinostroma	CLZhao 17926 *	OR096194	OR461462	OR469135	-	-	OR541934	Present study
	daweishanense								
	Scytinostroma duriusculum	He 3590	MK625571	MK625499	MN030923	_	-	MN030970	Unpublished
	Scytinostroma incrustatum	He 2841	MH142906	MH142910	MN030929	_	-	MN030976	Liu et al. (2018)
	Scytinostroma	He 5368	MH204689	MH204690	-	_	_	_	Liu et al. (2018)
	ncrustatum Scytinostroma portentosum	EL11-99	AF506470	AF506470	-	_	_	_	Larsson & Larsson (2003)
	Scytinostroma portentosum	CBS 503.48	MH856447	_	AF334890	_	-	-	Vu et al. (2019)
	Scytinostroma renisporum	CBS:770.86	MH862050	MH873737	-	-	_	_	Vu et al. (2019)
	Scytinostroma renisporum	CBS:771.86	MH862051	MH873738	_	-	_	_	Vu et al. (2019)
	Scytinostroma subduriusculum	He 7657	OQ731941	OQ729727	-	-	_	_	Li et al. (2023b)
	Scytinostroma subrenisporum	He 4792	MK625566	MK625493	-	-	_	_	Li et al. (2023b)
	Scytinostroma subranisportum	He 4384	MK625567	MK625495	_	-	-	-	Li et al. (2023b)
	Scytinostroma vunnanense	CLZhao 10802	MT611446	_	_	_	-	-	Wang et al. (2020)
Table 1 Contined.

Order/Family	Species name	Sample no.	GenBank accessions no.						References
·		•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
	Scytinostroma yunnanense	CLZhao 11010	MT611447	_	_	_	_	_	Wang et al. (2020)
-/Russulaceae	Russula cyanoxantha	HMAS 253220	KX441050	KX441297	_	KX441791	KX442038	_	He et al. (2019)
-/Stereaceae	Stereum hirsutum	AFTOL ID 492	AY854063	_	_	AY864885	AY218520	AY885159	Lutzoni et al. (2004)
Sebacinales/ Sebacinaceae	Sebacina incrustans	AFTOL-ID 1626	DQ917652	DQ521406	_	_	_	_	He et al. (2019)
	Tremellodendron pallidum	AFTOL-ID 699	DQ411526	AY745701	_	_	DQ408132	DQ029196	He et al. (2019)
Sistotremastrales/ Sistotremastraceae	Sertulicium guttuliferum	He 3338	MK204540	MK204552	_	_	_	_	Liu et al. (2022c)
	Sistotremastrum suecicum	KHL-11849	MN937571	MN937571	_	_	_	_	Liu et al. (2022c)
Stereopsidales/ Stereopsidaceae	Stereopsis radicans	OLR45395	KC203496	KC203496	_	_	KC203502	KC203516	Liu et al. (2022c)
Stereopstateette	Stereopsis globose	KHL 12592	KC203495	KC203495	_	_	KC203501	KC203515	Liu et al. (2022c)
Thelephorales/ Bankeraceae	Boletopsis leucomelaena	PBM2678	DQ484064	DQ154112	_	_	GU187820	GU187763	Liu et al. (2022c)
-/Thelephoraceae	Thelephora ganbajun	ZRL 20151295	LT716082	KY418908	_	_	KY419043	KY419093	Liu et al. (2022c)
Trechisporales/ Hydnodontaceae	Allotrechispora gatesiae	LWZ 20180515-18	OM523378	OM339206	_	_	OM416817	_	Liu et al. (2022c)
2	Allotrechispora gatesiae	LWZ 20180515-20	OM523379	OM339207	_	_	_	OM416797	Liu et al. (2022c)
	Brevicellicium atlanticum	LISU 178566	HE963773	HE963774	_	_	_	_	Telleria et al. (2013)
	Brevicellicium exile	MA-Fungi 26554	HE963777	HE963778	_	_	_	_	He et al. (2019)
	Dextrinocystis calamicola	He 5693	MK204533	MK204546	_	_	_	OM416800	Liu et al. (2019)
	Dextrinocystis calamicola	He 5701	MK204534	MK204547	_	_	OM416819	OM416801	Liu et al. (2019)
	Fibrodontia alba	LWZ 20170820-34	MT802102	MT802108	OM422802	_	MW478706	MW478698	Liu et al. (2022c)
	Fibrodontia austrosinensis	He 6283	MT802104	MT802110	_	-	MW478710	MW478699	Liu et al. (2022c)
	Fibrodontia	CLZhao 11201	OR094491	OR461463	OR469136	_	OR710284	_	Present study
	bambusicola								
	Fibrodontia	CLZhao 11261 *	OR094492	OR461464	OR469137	_	OR710285	OR541935	Present study
	bambusicola								•
	Fibrodontia brevidens	Wu 9807-16	KC928276	KC928277	_	_	_	_	Liu et al. (2022c)

Table 1 Contined.

Order/Family	Species name	Sample no.			GenBank accessions no.				References
U		•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	—
	Fibrodontia subalba	Dai 15931	MT802100	MT802106	_	_	_	_	Liu et al. (2022c)
	Fibrodontia	He 6033	OM523397	OM339222	-	_	_	_	Liu et al. (2022c)
	subaustrosinensis								
	Luellia cystidiata	JHP-09.455	MW371211	MW371211	_	-	_	-	Liu et al. (2022c)
	Porpomyces submucidus	Cui 5183	KT152143	KT152145	_	_	_	_	Wu et al. (2015)
	Porpomyces submucidus	Dai 13708	KT152144	KT152146	_	_	_	MW478702	Wu et al. (2015)
	Pteridomyces galzinii	Bernicchia 8122	MN937559	MN937559	_	_	_	_	Liu et al. (2022c)
	Pteridomyces galzinii	GB0150230	LR694210	LR694188	_	_	LR694282	LR694226	Liu et al. (2022c)
	Scytinopogon sp.	MEL:2382675	KP013038	KP013038	_	_	_	_	Liu et al. (2022c)
	Scytinopogon sp.	MEL:2382987	KP012842	KP012842	_	_	_	_	Liu et al. (2022c)
	Subulicystidium	He 3804	MK204539	MK204543	_	_	_	_	Liu et al. (2019)
	acerosum								
	Subulicystidium boidinii	L 1584a	MH041527	_	_	_	_	_	Ordynets et al. (2018)
	Subulicystidium	He 2207	MK204532	MK204549	_	_	_	_	Liu et al. (2019)
	brachysporum								
	Subulicystidium	KHL16100	MH000599	MH000599	_	_	_	_	Ordvnets et al. (2018)
	brachysporum								
	Subulicystidium	KHL 14355	MN207034	MN207026	_	_	_	_	Ordynets et al. (2020)
	cochleum								
	Subulicvstidium	KHL 11200	MN207036	MN207024	_	_	_	_	Ordvnets et al. (2020)
	cochleum								
	Subulicystidium daii	LWZ 20170820-35	OM523399	OM339224	OM422786	_	_	_	Liu et al. (2022c)
	Subulicystidium daii	Xiong 221	OM523400	_	_	_	_	_	Liu et al. $(2022c)$
	Subulicystidium	KHL 10360	MH041535	MH041567	_	_	_	_	Ordynets et al. (2018)
	fusisporum	111111 10000	11110 11000						(10)
	Subulicystidium	KHL 12761	MH041536	MH041568	_	_	_	_	Ordynets et al. (2018)
	fusisporum	11111 12,01	11110 11000						(10)
	Subulicystidium	F 506781	MH041547	MH041592	_	_	_	_	Ordynets et al. (2018)
	orandisporum	1 200701		10111011292					
	Subulicystidium	L 1726a	MH041532	MH041588	_	_	_	_	Ordynets et al. (2018)
	harpagum	E 1720u	11110 11002	1111011200					
	Subulicystidium	LR 15736	MH041531	MH041586	_	_	_	_	Ordynets et al. (2018)
	harpaoum	LIC 13750	1011011331	1111011200					Ordyneis et ul. (2010)
	Subulicystidium	KHI 10444	MH041558	MH041569	_	_	_	_	Ordynets et al. (2018)
	inornatum	INIL IVITI	1110+1550	10110+1307					Grayhets et al. (2010)
	Subulicystidium	KHL14229	MH000601	MH000601	_	_	_	_	Ordynets et al. (2018)
	longisnorum	111117227	1011000001	1011000001					Grayhets et al. (2010)
	iongisporum								

Table 1 Contined.

Order/Family	Species name	Sample no.	GenBank accessions no.					References	
·	•	•	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	
	Subulicystidium	Ordynets 00146	MN207039	MN207032	-	-	-	-	Ordynets et al. (2020)
	longisporum								
	Subulicystidium	LR 19581	MH041551	MH041578	-	-	-	_	Ordynets et al. (2020)
	meridense	1.1007		1041565					0.1
	Subulicystidium nikau	L 1296	MH041513	MH041565	_	-	-	-	Ordynets et al. (2018)
	Subulicystidium	KHL 10622	MH041559	MH041606	_	-	_	_	Ordynets et al. (2018)
	Subulicystidium	L 0140	MH041529	MH041590	_	_	_	_	Ordynets et al. (2018)
	parvisporum	LOTIO	1011011525	1011011090					Ordynets et un (2010)
	Subulicystidium	L 1226	MH041528	MH041587	_	_	_	_	Ordynets et al. (2018)
	parvisporum								•
	Subulicystidium	KHL16062	MH000600	MH000600	-	_	_	_	Ordynets et al. (2018)
	perlongisporum								
	Subulicystidium	F 918488	MH041512	MH041564	-	-	-	-	Ordynets et al. (2018)
	rarocrystallinum Subuli meti linur	VIII 10012	MII041514						$O_{\rm relation}$ at al. (2018)
	subulicystialum	KHL 10815	MH041314	MH041008	_	_	_	-	Ordynets et al. (2018)
	Subulicystidium	KHL 10272	MH041516	MH041607	_	_	_	_	Ordynets et al. (2018)
	robustius	IIII 10272	1011011010	1011011007					Ordynets et un (2010)
	Subulicystidium	He 3968	MK204531	MK204544	OM422787	_	MW478711	_	Liu et al. (2022c)
	tropicum								
	Subulicystidium	CLZhao 18950 *	OR096209	OR461465	_	_	OR710286	_	Present study
	yunnanense								
	Subulicystidium	CLZhao 23687	OR167195	OR461466	-	_	-	-	Present study
	yunnanense	CL 71	001/710/						Development of a lar
	Subulicystialum	CLZnao 23944	OK10/190	_	_	_	_	-	Present study
	yunnunense Tubulicium hambusicola	Не 4776	MK204536	MK204551	OM422789	_	_	_	Lin et al. (2019)
	Tubulicium	He 3191	OM523534	OM339334	OM422801	_	_	_	Liu et al. (2019)
	raphidisporum	110 5171	0111525554	011557554	0111122001				
-/Sistotremastraceae	Sertulicium	Larsson 13727	MN937563	MN937563	_	_	_	_	Liu et al. (2022c)
	niveocremeum								
	Sistotremastrum mendax	Larsson 12022	MN937570	MN937570	_	_	_	_	Liu et al. (2022c)
Tremellomycetes									
Tremellales/Bulleraceae	Bullera alba	CBS 501	AF444368	AF075500	_	-	KF036745	KF037016	Liu et al. (2022c)
-/Cryptococcaceae	Dioszegia antarctica	CBS 10920	DQ402529	FJ640575	_	_	KF036858	KF037129	Liu et al. (2022c)

Species name	Sample no.		References					
-	-	ITS	nLSU	mtSSU	RPB1	RPB2	TEF1	_
Bulbillomyces farinosus	FP 100488T	KY948802	_	_	KY948929	_	_	Liu et al. (2023a)
Cabalodontia delicata	MCW 564/17	MT849295	MT849295	_	MT833947	_	MT833934	Westphalen et al. (2021)
Calocera cornea	AFTOL 438	AY789083	AY701526	_	AY857980	AY536286	AY881019	Matheny et al. (2007)
Cerrena unicolor	He 6082	OM100740	OM083972	ON417068	ON424672	ON424756	ON424825	Liu et al. (2022a)
Climacocystis borealis	Dai 4014	KJ566627	KJ566637	_	ON688463	_	KJ566644	Liu et al. (2023a)
Climacocystis borealis	FD-31	KP135308	KP135210	_	KP134882	KP134895	_	Floudas & Hibbett (2015)
Cymatoderma elegans	Dai 17511	ON417155	ON417205	_	_	_	_	Liu et al. (2022b)
Dacryopinax spathularia	AFTOL 454	AY854070	AY701525	_	AY857981	AY786054	AY881020	Matheny et al. (2007)
Fomitiporia mediterranea	AFTOL-ID 688	AY854080	AY684157	_	AY864869	AY803748	AY885149	Matheny et al. (2007)
Gyrophanopsis japonica	TUMH:61400	LC663668	LC663688	_	_	_	_	Maekawa et al. (2023)
Gyrophanopsis polonense	NH 11337 (GB)	DQ677511	DQ677511	_	_	_	_	Larsson et al. (2007a)
Gyrophanopsis zealandica	NH 15340	DQ309068	-	_	_	_	_	Paulus et al. (2007)
Heterobasidion annosum	Dai 20962	ON417163	ON417213	ON417079	ON424698	ON424776	ON529284	Liu et al. (2022b)
Hyphoderma mutatum	HHB 15479	KP135296	KP135221	_	KP134870	KP134967	_	Floudas & Hibbett (2015)
Hypochnicium bombycinum	HHB 12631	KY948801	KY415959	_	KY948930	_	_	Justo et al. (2017)
Hypochnicium bombycinum	Otto Miettinen	KY415959	KY415959	_	_	_	_	Maekawa et al. (2023)
	9441 (H)							
Leptoporus mollis	TJV-93-174-T	KY948795	EU402510	_	KY948957	OK136102	MZ913694	Justo et al. (2017)
Mycena amabilissima	AFTOL 1686	DQ490644	DQ457691	_	DQ447926	DQ474121	GU187727	Matheny et al. (2007)
Mycena aurantiidisca	AFTOL 1685	DQ490646	DQ470811	_	DQ447927	DQ474122	GU187728	Matheny et al. (2007)
Marasmius rotula	AFTOL 1505	DQ182506	DQ457686	_	DQ447922	DQ474118	GU187723	Matheny et al. (2007)
Neohypochnicium cystidiatum	MUCL 32103	DQ658163	-	_	-	-	_	Paulus et al. (2007)
Neohypochnicium michelii	MA-Fungi 79155	FN552535	JN939579	_	_	_	_	Telleria et al. (2010a)
Neohypochnicium murinum	CLZhao 19017	OQ788985	OQ789005	OR469109	_	_	OR541917	Present study
Neohypochnicium	TUMH:40397	LC663679	LC663690	_	_	_	_	Maekawa et al. (2023)
perlongicystidiosum								
Neohypochnicium velutinum	CLZhao 18084	OQ789999	OQ788980	OR469114	_	_	OR541921	Present study
Panus fragilis	HHB 11042	KP135328	KP135233	_	KP134877	_	_	Floudas & Hibbett (2015)
Phellinus hartigii	Dai 11766	KT203287	KT203308	KT203329	KJ651628	KJ651721	_	Liu et al. (2022a)
Phlebia nantahaliensis	HHB 2816	KY948777	KY948852	_	KY948920	OK136063	MZ913701	Liu et al. (2023a)
Phlebiopsis gigantea	FCUG 1417	MZ637051	AF141634	_	MZ748370	OK135996	MZ913623	Liu et al. (2023a)
Physisporinus longicystidius	Cui 16630	ON417177	ON417227	_	ON424717	ON424795	ON424856	Liu et al. (2022a)
Polyporus squamosus	Cui 10595	KU189778	KU189809	KU189960	KU189892	KU189988	KU189925	Zhou et al. (2016)
Schizosaccharomyces pombe	972h-	Z19578	Z19136	_	NM_001021568	NM_001018498	NM_001021161	Matheny et al. (2007)
Steccherinum meridionale	Cui 16691	ON417195	ON417247	_	ON424743	ON424817	ON424882	Liu et al. (2022b)
Stereum hirsutum	AFTOL ID 492	AY854063	_	_	AY864885	AY218520	AY885159	Lutzoni et al. (2004)
Trametes cinnabarina	Dai 14386	KX880629	KX880667	KX880712	KX880818	KX880854	KX880885	Cui et al. (2019)

Table 2 Information of taxa used in molecular clock analysis.

Raithelh. was selected as outgroup taxa in the ITS+nLSU+mtSSU+RPB2 analysis (Fig. 9) as in Dong et al. (2021); Gyroporus castaneus (Bull.) Quél. was selected as outgroup taxa in the ITS+nLSU+mtSSU analysis (Fig. 10) as in He et al. (2020); Cinereomyces lindbladii (Berk.) Jülich was selected as outgroup taxa in the ITS analysis (Fig. 11) as in Fan et al (2017); Byssomerulius corium (Pers.) Parmasto was selected as outgroup taxa in the ITS+nLSU+TEF1 analysis (Fig. 12) as in Chen et al. (2021); Heterobasidion annosum (Fr.) Bref. and Stereum hirsutum (Willd.) Pers. were selected as outgroup taxa in the ITS+nLSU+mtSSU+RPB1+TEF1 analysis (Fig. 13) as in Liu et al. (2022b); Hyphoderma setigerum (Fr.) Donk was selected as outgroup taxa in the ITS analysis (Fig. 14) as in Telleria et al. (2010a); Sequences of Schizosaccharomyces pombe Lindner were retrieved from GenBank and used as outgroup taxa in the ITS analysis (Fig. 15); Irpex lacteus (Fr.) Fr. and I. latemarginatus (Durieu & Mont.) C.C. Chen & Sheng H. Wu were selected as outgroup taxa in the ITS+nLSU+RPB1+RPB2+TEF1 analysis (Fig. 16) as in Chen et al. (2021); Climacocystis borealis (Fr.) Kotl. & Pouzar was selected as outgroup taxa in the ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 analysis (Fig. 17) as in Dong et al. (2023b); Lentinellus vulpinus (Sowerby) Kühner & Maire and L. sublineolatus R.H. Petersen were selected as outgroup taxa in the ITS analysis (Fig. 18) as in Kneal & Smith (2015); Amylostereum chailletii (Pers.) Boidin and A. laevigatum (Fr.) Boidin were selected as outgroup taxa in the ITS+nLSU analysis (Fig. 19) as in Li et al. (2023b); Sertulicium niveocremeum (Höhn. & Litsch.) Spirin & K.H. Larss. and Sistotremastrum mendax Spirin & Volobuev were selected as outgroup taxa in the ITS+nLSU+mtSSU+RPB2+TEF1 analysis (Fig. 20) as in Liu et al. (2022c); Heterobasidion annosum (Fr.) Bref. and Stereum hirsutum (Willd.) Pers. were selected as outgroup taxa in the ITS+nLSU analysis (Fig. 21) as in Liu et al. (2022b).

RESULTS

Molecular phylogeny

Dendrothele phylogeny based on combined ITS+nLSU sequence data (Fig. 2)

The aligned dataset comprised 12 specimens representing 12 species. Four Markov chains were run for 2 runs from random starting trees, each for 0.3 million generations for the combined ITS+nLSU (Fig. 2) data set with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 2007 characters, of which 1297 characters are constant, 445 are variable and parsimony uninformative, and 265 are parsimony informative. Maximum parsimony analysis yielded 1 equally parsimonious trees (TL = 1106, CI = 0.8083, HI = 0.1917, RI = 0.6455, and RC = 0.5218). The best model for the ITS+nLSU dataset, estimated and applied in the Bayesian analysis, was SYM+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.001885 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 913.5.

Radulomyces phylogeny based on combined ITS+nLSU sequence data (Fig. 3)

The aligned dataset comprised 27 specimens representing 12 species. Four Markov chains were run for 2 runs from random starting trees, each for 1.5 million generations for the combined ITS+nLSU (Fig. 3) data set with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 2120 characters, of which 1718 characters are constant, 115 are variable and parsimony uninformative, and 257 are parsimony informative. Maximum parsimony analysis yielded 18 equally parsimonious trees (TL = 640, CI = 0.7312, HI = 0.2688, RI = 0.8030, and RC = 0.5872). The best model for the ITS+nLSU dataset, estimated and applied in the Bayesian analysis, was SYM+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.008710 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 463.

Figure 2 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Dendrothele yunnanensis* and related species in *Dendrothele* based on ITS+nLSU sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Figure 3 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Radulomyces* and related genera in Radulomycetaceae based on ITS+nLSU sequences. Branches are labeled with

maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Corticium phylogeny based on combined ITS+nLSU sequence data (Fig. 4)

The aligned dataset comprised 25 specimens representing 19 species. Four Markov chains were run for 2 runs from random starting trees, each for 1 million generations for the combined ITS+nLSU (Fig. 4) data set with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 2173 characters, of which 1471 characters are constant, 214 are variable and parsimony uninformative, and 488 are parsimony informative. Maximum parsimony analysis yielded 8 equally parsimonious trees (TL = 1603, CI = 0.6182, HI = 0.3818, RI = 0.6762, and RC = 0.4180). The best model for the ITS+nLSU dataset, estimated and applied in the Bayesian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.004148 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 703.5.

Figure 4 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Corticium* and related genera in Corticiaceae based on ITS+nLSU sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Hydnoporia phylogeny based on combined ITS, nLSU, mtSSU, RPB1, RPB2 and TEF1 sequence data (Fig. 5) and ITS sequence data (Fig. 6)

The aligned dataset comprised 45 specimens representing 43 species. Four Markov chains were run for 2 runs from random starting trees, each for 1.5 million generations for the combined ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 (Fig. 5) data set with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 7543 characters, of which 4005 characters are constant, 870 are variable and parsimony uninformative, and 2668 are parsimony informative. Maximum parsimony analysis yielded 1 equally parsimonious trees (TL = 13866, CI = 0.4518, HI = 0.4911, The 0.5482, RI and RC 0.2219). best model for the = ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 dataset, estimated and applied in the Bayesian analysis,

was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.007014 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 422.

The aligned dataset comprised 33 specimens representing 18 species. Four Markov chains were run for 2 runs from random starting trees, each for 0.5 million generations for the ITS (Fig. 6) with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 755 characters, of which 502 characters are constant, 70 are variable and parsimony uninformative, and 183 are parsimony informative. Maximum parsimony analysis yielded 23 equally parsimonious trees (TL = 454, CI = 0.7181, HI = 0.2819, RI = 0.8164, and RC = 0.5862). The best model for the ITS dataset, estimated and applied in the Bayesian analysis, was HKY+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.007958 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 201.

Figure 5 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Hydnoporia* and related genera in Hymenochaetaceae based on ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 sequences.

Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Figure 6 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Hydnoporia pinicola*, *H. yunnanensis* and related species in *Hydnoporia* based on ITS sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Peniophorella phylogeny based on combined ITS, nLSU and mtSSU sequence data (Fig. 7)

The aligned dataset comprised 33 specimens representing 19 species. Four Markov chains were run for two runs from random starting trees, each for one million generations the combined for ITS+nLSU+mtSSU (Fig. 7) data set with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 3295 characters, of which 2473 characters are constant, 259 are variable and parsimony uninformative, and 563 are parsimony informative. Maximum parsimony analysis yielded 6 equally parsimonious trees (TL = 1723, CI = 0.6541, HI = 0.3459, RI = 0.7325, and RC = 0.4791). The best model for the ITS+nLSU+mtSSU dataset, estimated and applied in the Bayesian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.006507 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 454.

Figure 7 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Peniophorella daweishanensis*, *P. olivacea* and related species in *Peniophorella* based on ITS+nLSU+mtSSU sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Lyomyces and Xylodon phylogeny based on combined ITS+nLSU sequence data (Fig. 8)

The aligned dataset comprised 66 specimens representing 57 species. Four Markov chains were run for 2 runs from random starting trees, each for 2.5 million generations for the combined ITS+nLSU (Fig. 8) data set with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 2260 characters, of which 1229 characters are constant, 389 are variable and parsimony uninformative, and 642 are parsimony informative. Maximum parsimony analysis yielded 1 equally parsimonious trees (TL = 4736, CI = 0.3571, HI = 0.6429, RI = 0.5230, and RC = 0.1867). The best model for the ITS+nLSU dataset, estimated and applied in the Bayesian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.013716 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 674.

Skvortzovia phylogeny based on combined ITS, nLSU, mtSSU and RPB2 sequence data (Fig. 9)

The aligned dataset comprised 16 specimens representing 10 species. Four Markov chains were run for 2 runs from random starting trees, each for 1 million generations for the combined ITS+nLSU+mtSSU+RPB2 (Fig. 9) data set with trees and parameters sampled every 1000

generations. The dataset had an aligned length of 3391 characters, of which 2339 characters are constant, 476 are variable and parsimony uninformative, and 576 are parsimony informative. Maximum parsimony analysis yielded one equally parsimonious trees (TL = 1874, CI = 0.7796, HI = 0.2204, RI = 0.6570, and RC = 0.5122). The best model for the ITS+nLSU+mtSSU+RPB2 dataset, estimated and applied in the Bayesian analysis, was GTR+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.004675 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 966.

Figure 8 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Lyomyces*, *Xylodon* and related genera in Schizoporaceae based on ITS+nLSU sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Tubulicrinis phylogeny based on combined ITS, nLSU and mtSSU sequence data (Fig. 10)

The aligned dataset comprised 19 specimens representing 16 species. Four Markov chains were run for two runs from random starting trees, each for 0.8 million generations for the combined ITS+nLSU+mtSSU (Fig. 10) data set with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 2856 characters, of which 1598 characters are constant, 643 are variable and parsimony uninformative, and 615 are parsimony informative. Maximum parsimony analysis yielded 1 equally parsimonious trees (TL = 2300, CI = 0.7243, HI = 0.2757, RI = 0.2757, and RC = 0.4212). The best model for the ITS+nLSU+mtSSU dataset, estimated and applied in the Bayesian analysis, was GTR+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.008968 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 909.5.

Skeletocutis phylogeny based on combined ITS sequence data (Fig. 11)

The aligned dataset comprised 45 specimens representing 23 species. Four Markov chains were run for 2 runs from random starting trees, each for 1.1 million generations for the ITS (Fig. 11) with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 704 characters, of which 361 characters are constant, 34 are variable and parsimony uninformative, and 309 are parsimony informative. Maximum parsimony analysis yielded 3 equally parsimonious trees (TL = 852, CI = 0.6103, HI = 0.6103, RI = 0.8524, and RC = 0.5202). The best model for the ITS dataset, estimated and applied in the Bayesian analysis, was HKY+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.009860 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 145.

Figure 8 – Continued.

Figure 9 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Skvortzovia incana* and related species in *Skvortzovia* based on ITS+nLSU+mtSSU+RPB2 sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Figure 10 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Tubulicrinis pini* and related species in *Tubulicrinis* based on ITS+nLSU+mtSSU sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Figure 11 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Skeletocutis rhizomorpha* and related species in *Skeletocutis* based on ITS sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Efibula phylogeny based on combined ITS, nLSU and TEF1 sequence data (Fig. 12)

The aligned dataset comprised 29 specimens representing 17 species. Four Markov chains were run for two runs from random starting trees, each for one million generations for the combined ITS+nLSU+TEF1 (Fig. 12) data set with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 2968 characters, of which 2229 characters are constant, 153 are variable and parsimony uninformative, and 586 are parsimony informative.

Maximum parsimony analysis yielded 1 equally parsimonious trees (TL = 1535, CI = 0.6508, HI = 0.3492, RI = 0.7387, and RC = 0.4807). The best model for the ITS+nLSU+TEF1 dataset, estimated and applied in the Bayesian analysis, was SYM+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.003396 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 345.5.

Figure 12 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Efibula daweishanensis* and related species in *Efibula* based on ITS+nLSU+TEF1 sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Neohypochnicium phylogeny based on combined ITS, nLSU, mtSSU, RPB1 and TEF1 sequence data (Fig. 13) and ITS sequence data (Fig. 14)

The aligned dataset comprised 142 specimens representing 115 species. Four Markov chains were run for two runs from random starting trees, each for seven million generations for the combined ITS+nLSU+mtSSU+RPB1+TEF1 (Fig. 13) data set with trees and parameters sampled

every 1000 generations. The dataset had an aligned length of 5510 characters, of which 1854 characters are constant, 921 are variable and parsimony uninformative, and 2735 are parsimony informative. Maximum parsimony analysis yielded 100 equally parsimonious trees (TL = 33957, CI = 0.2059, HI = 0.7941, RI = 0.5116, and RC = 0.1053). The best model for the ITS+nLSU+mtSSU+RPB1+TEF1 dataset estimated and applied in the Bayesian analysis was GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with

Figure 13 – Maximum parsimony strict consensus tree illustrating the phylogeny of Neohypochniciaceae, Hypochniciaceae and related families in Polyporales based on ITS+nLSU+mtSSU+RPB1+TEF1 sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Figure 13 – Continued.

an average standard deviation of split frequencies = 0.107171 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 382.5.

The aligned dataset comprised 58 specimens representing 22 species. Four Markov chains were run for 2 runs from random starting trees, each for 1.3 million generations for the ITS (Fig. 14) with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 661 characters, of which 291 characters are constant, 50 are variable and parsimony uninformative, and 320 are parsimony informative. Maximum parsimony analysis yielded one equally parsimonious trees (TL = 1333, CI = 0.4554, HI = 0.4554, RI = 0.7551, and RC = 0.7551). The best model for the ITS dataset, estimated and applied in the Bayesian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an

average standard deviation of split frequencies = 0.008032 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 100.5.

	Neohypochnicium velutinum CLZhao 18084						
* Holotype	Neohypochnicium velutinum CLZhao 18085						
in noisipe	100/100/0.95 Neohypochnicium velutinum CLZhao 18101						
	1001.00 Neohypochnicium velutinum CLZhao 18144 📩						
	Neohypochnicium perlongicystidiosum TUMH:40397						
	199/199/100 Neohypochnicium perlongicystidiosum TUMH:63618						
	Neohypochnicium zixishanense CLZbao 7270 ★						
	Neohypochnicium aotearoae NH 15862						
	Neohypochnicium patagonicum GB:0129149						
	Neohypochnicium guineense MA-Fungi 79156						
	9399/1.00 - Neohypochnicium cremicolor CBS:208.54						
	Neohypochnicium cremicolor NH 3406						
	95'-/- 96'99'1.00 Neoheohypochnicium pini TUMH:61221						
	N894/1.00 Neoheohypochnicium pini F0023763						
	100/100/100/ Neohypochnicium cystidiatum MUCL 32103						
	Neohypochnicium cystidiation MUCL 32104						
	100/100/1.00 Neoltypochnicium punctulatum FP 101698						
	Neohypochnicium punctulatum NH 7815						
	100/100/100 Neohypochnicium huinayense 19598 Tell						
	Neohypochnicium huinayense MA:Fungi:13980MD						
	Neohypochnichun wakefieldiae NH 12107						
	95/100/1.00 Neohypochnicium wakefieldiae KJM 271						
	100/100/1 og Neohvpochnicium albostramineum NH 3688						
	- #40.99 Neohypochnicium albostramineum NH 9637						
	Neohypochnicium asiaticum TUMH:61220						
	Neohypochnicium asiaticum TUMH:61227						
	Neohypochnicium farinaceum CLZhao 18089						
	Neohypochnicium farinaceum CLZhao 18792						
	Neohypochnicium farinaceum CLZhao 19022						
	Neohypochnicium farinaceum CLZhao 18867						
	Neohypochnicium farinaceum CLZhao 18850						
	Neohypochnicium farinaceum CLZhao 18844						
	85/00/1.00 Neohypochnicium farinaceum CLZhao 18787						
	Neohypochnicium farinaceum CLZhao 18798						
	Neohypochnicium farinaceum CLZhao 18856						
	Neohypochnicium farinaceum CLZhao 18771						
	Neohypochnicium farinaceum CLZhao 18881						
	Neohypochnicium farinaceum CLZhao 18820 ★						
	71/99 Neohypochnicium farinaceum CLZhao 18764						
	Neohypochnicium murinum CLZhao 19031						
	Neohypochnicium murinum CLZhao 19067						
	Neohypochnicium murinum CLZhao 19012 ★						
	Neohypochnicium murinum CLZhao 19017						
73/+/0.95	99/100/1.00 Neohypochnicium murinum CLZhao 19129						
	Neohypochnicium murinum CLZhao 6855						
	Neohypochnicium murinum CLZhao 19020						
	Neohypochnicium murinum CLZhao 19125						
	Neohypochnicium subrigescens KHL 11968						
,	00/100/1.00 Neohypochnicium subrigescens NH 10421						
	Neohypochnicium michelii MA-Fungi 79155						
100/100	v1.00 Neohypochnicium yunnanense CLZhao 18525 ★						
85/81/41.99	Neohypochnicium daweishanense CLZhao 17726 ★						
Neutrypochnicum	Neohypochnicium geogenium FCUG 2052						
95/99/1.001	Neohypochnichum geogenium MA-Fungi 48308						
~/100/1.00 Neo	hypochnicium microsporum GG-GUY13-100						
Neo	hypochnicium microsporum GG-GUY12-101						
Hyphoderma s	etigerum NH 6748						
Hyphoderma set	igerum FCUG 1688						
20							

Figure 14 – Maximum parsimony strict consensus tree illustrating the phylogeny of six new species and related species in *Neohypochnicium* based on ITS sequences. Branches are labeled with

maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Figure 15 Chronogram estimated divergence Neohypochniciaceae and times of _ and Hypochniciaceae generated by molecular clock analysis using the ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 dataset. The chronogram was obtained using the Ascomycota–Basidiomycota divergence time of 582 Mya as the calibration point. The calibration points and objects of this study are marked in the chronogram. The geological time scale is in millions years ago (Mya).

The divergence time of Hypochniciaceae and Neohypochniciaceae based on ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 (Fig. 15)

The ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 dataset included 35 collections, of which 25 belonged to Polyporales. This dataset resulted in a concatenated alignment of 5466 characters with GTR+I+G as the best-fit evolutionary model. Chain convergence was indicated by the ESSs. In Polyporales, the family Neohypochniciaceae occurred in a mean crown age of 161.72 Mya with a 95% highest posterior density (HPD) of 95.71–235.28 Mya, followed by Hypochniciaceae with a mean crown age of 133 Mya and a 95% HPD of 69.58–205.77 Mya (Table 3).

Family	means of stem age (Mya) time/95%HPD (Mya) Posterior probabilities	means of crown age (Mya) time/95% HPD (Mya) Posterior probabilities				
Hypochniciaceae	200.03/132.24-276.85/-	133/69.58-205.77/1				
Neohypochniciaceae	200.03/132.24-276.85/-	161.72/95.71-235.28/1				
C1: Hymenochaetales	-	143.09/135.79–151.67/1				
C2: Agaricales	_	110.7/102.26-120.35/1				

Table 3 Inferred divergence time of Hypochniciaceae and Neohypochniciaceae.

Donkiella gen. nov., *Phanerochaete* and *Phlebiopsis* phylogeny based on combined ITS, nLSU, RPB1, RPB2 and TEF1 sequence data (Fig. 16)

The aligned dataset comprised 72 specimens representing 65 species. Four Markov chains

were run for two runs from random starting trees, each for five million generations for the combined ITS+nLSU+RPB1+RPB2+TEF1 (Fig. 16) data set with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 5870 characters, of which 3395 characters are constant, 506 are variable and parsimony uninformative, and 1969 are parsimony informative. Maximum parsimony analysis yielded 2 equally parsimonious trees (TL = 15633, CI = 0.2785, HI = 0.7215, RI = 0.4691, and RC = 0.4691). The best model for the ITS+nLSU+RPB1+RPB2+TEF1 dataset, estimated and applied in the Bayesian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.0081392 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 730.5.

Figure 16 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Donkiella*, *Phanerochaete*, *Phlebiopsis* and related genera in Phanerochaetaceae based on ITS+nLSU+RPB1+RPB2+TEF1 sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Etheirodon, Nigroporus and *Steccherinum* phylogeny based on combined ITS, nLSU, mtSSU, RPB1, RPB2 and TEF1 sequence data (Fig. 17)

The aligned dataset comprised 47 specimens representing 41 species. Four Markov chains were run for two runs from random starting trees, each for 1.5 million generations for the combined ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 (Fig. 17) data set with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 7214 characters, of which 3884

characters are constant, 1299 are variable and parsimony uninformative, and 2031 are parsimony informative. Maximum parsimony analysis yielded one equally parsimonious trees (TL = 8510, CI = 0.5707, HI = 0.4293, RI = 0.5186, and RC = 0.5186). The best model for the ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 dataset, estimated and applied in the Bayesian analysis, was GTR+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.012861 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 421.5.

Figure 16 – Continued.

Artomyces phylogeny based on combined ITS sequence data (Fig. 18)

The aligned dataset comprised 36 specimens representing 20 species. Four Markov chains were run for 2 runs from random starting trees, each for 1.5 million generations for the ITS (Fig. 18) with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 703 characters, of which 420 characters are constant, 32 are variable and parsimony uninformative, and 251 are parsimony informative. Maximum parsimony analysis yielded 10 equally parsimonious trees (TL = 926, CI = 0.4795, HI = 0.5205, RI = 0.6785, and RC = 0.3253). The best model for the ITS dataset, estimated and applied in the Bayesian analysis, was HKY+G. Both Bayesian analysis

and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.006800 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 182.

Figure 17 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Etheirodon*, *Nigroporus*, *Steccherinum* and related genera in Steccherinaceae based on ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Scytinostroma phylogeny based on combined ITS+nLSU sequence data (Fig. 19)

The aligned dataset comprised 34 fungal specimens representing 26 species. Four Markov chains were run for 2 runs from random starting trees, each for 1 million generations for the combined ITS+nLSU (Fig. 19) data set with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 2597 characters, of which 1516 characters are constant, 329 are variable and parsimony uninformative, and 752 are parsimony informative. Maximum parsimony analysis yielded 1 equally parsimonious trees (TL = 3661, CI = 0.4990, HI = 0.5010, RI = 0.5955, and RC = 0.2972). The best model for the ITS+nLSU dataset, estimated and applied in the Bayesian analysis, was SYM+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.004818 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 632.5.

Figure 18 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Artomyces niveus*, *A. yunnanensis* and related species in *Artomyces* based on ITS sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Figure 19 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Scytinostroma* and related genera in Peniophoraceae based on ITS+nLSU sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Fibrodontia and *Subulicystidium* phylogeny based on combined ITS, nLSU, mtSSU, RPB2 and TEF1 sequence data (Fig. 20)

The aligned dataset comprised 52 fungal specimens representing 37 species. Four Markov chains were run for 2 runs from random starting trees, each for 4 million generations for the combined ITS+nLSU+mtSSU+RPB2+TEF1 (Fig. 20) data set with trees and parameters sampled every 1000 generations. The dataset had an aligned length of 4218 characters, of which 2116 characters are constant, 897 are variable and parsimony uninformative, and 1205 are parsimony informative. Maximum parsimony analysis yielded 2 equally parsimonious trees (TL = 6273, CI = 0.5218, HI = 0.4782, RI = 0.4782, and RC = 0.2606). The best model for the ITS+nLSU+mtSSU+RPB2+TEF1 dataset, estimated and applied in the Bayesian analysis, was SYM+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.010846 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 861.5.

The seven species new to China phylogeny based on combined ITS+nLSU sequence data (Fig. 21)

The aligned dataset comprised 110 specimens representing 84 species. Four Markov chains were run for 4 runs from random starting trees, each for three million generations for the combined ITS+nLSU (Fig. 21) data set with trees and parameters sampled every 1000 generations.

Figure 20 – Maximum parsimony strict consensus tree illustrating the phylogeny of *Fibrodontia*, *Subulicystidium* and related genera in Hydnodontaceae based on ITS+nLSU+RPB2+TEF1

sequences. Branches are labeled with maximum likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

The dataset had an aligned length of 2251 characters, of which 1172 characters are constant, 178 are variable and parsimony uninformative, and 901 are parsimony informative. Maximum parsimony analysis yielded 1 equally parsimonious trees (TL = 9402, CI = 0.2145, HI = 0.7855, RI = 0.5258, and RC = 0.1128). The best model for the ITS+nLSU dataset, estimated and applied in the Bayesian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.012025 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is the double of the average ESS (avg ESS) = 605.5.

Figure 21 – Maximum parsimony strict consensus tree illustrating the phylogeny of seven new record species in China based on ITS+nLSU sequences. Branches are labeled with maximum

likelihood bootstrap values higher than 70%, parsimony bootstrap values higher than 50% and Bayesian posterior probabilities more than 0.95 respectively.

Figure 21 – Continued.

Taxonomy

Agaricales Underw.

Dendrothele Höhn. & Litsch.

Index Fungorum number: IF17484; Facesoffungi number: FoF15390

Type species – Dendrothele papillosa Höhn. & Litsch.

Notes – The genus *Dendrothele* Höhn. & Litsch. was erected by Höhnel & Litschauer (1907) and is typified by *D. papillosa* Höhn. & Litsch. Goranova (2003) demonstrated that *Dendrothele* was polyphyletic with taxa distributed among 11 lineages in the hymenochaetoid, russuloid,

corticioid and agaricoid clades. Molecular studies showed that *D. griseocana* (Bres.) Bourdot & Galzin, the generic type of *Dendrothele*, was embedded in the Agaricales clade and closely related to *Lachnella* Fr. and *Cyphellopsis* Donk (Bodensteiner et al. 2004, Binder et al. 2005). One distinct clade recovered by Bodensteiner et al. (2004), and named as the Nia clade, comprised several cyphelloid genera, the marine species *Nia vibrissa* R.T. Moore & Meyers, and two species of *Dendrothele*, one being the generic type *D. griseo-cana. Dendrothele* is a highly polyphyletic genus and representatives occurred in the orders Corticiales K.H. Larss., Russulales Kreisel ex P.M. Kirk, P.F. Cannon & J.C. David and possibly Polyporales Gäum. (Larsson 2007a). A phylogenetic study of *Dendrothele sensu stricto* from New Zealand was carried out, in which 13 species were reported (Nakasone & Burdsall 2011). In the present study, one additional species of *Dendrothele* is described from China based on morphological characteristics and phylogenetic analyses inferred from ITS+nLSU sequences.

Dendrothele yunnanensis J.H. Dong & C.L. Zhao, sp. nov. Figs 22, 23

Index Fungorum number: IF850313; Facesoffungi number: FoF15391

Diagnosis – Differs from other *Dendrothele* species by the ceraceous basidiomata with white to cream, smooth hymenial surface with numerous crevices, monomitic hyphal system with clamped generative hyphae and subglobose to globose basidiospores measuring $7.5-9 \times 6-7.8 \,\mu\text{m}$.

Etymology - yunnanensis (Lat.): referring to the locality (Yunnan Province) of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 1 August 2019, CLZhao 17814 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, coriaceous, without odor or taste when fresh, becoming hard ceraceous upon drying, up to 15 cm long, 100–200 μ m thick. Hymenial surface smooth, cracked with numerous crevices, white when fresh, white to cream upon drying. Sterile margin cream, thinning out, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, difficult to discern, colorless, thin-walled, rarely branched, 2–3 µm in diameter; IKI–, CB–, tissues unchanged in KOH; dendrohyphidia numerous, 1–2.5 µm in diameter; subhymenial hyphae densely covered by larger crystals. Cystidia and cystidioles absent. Basidia subclavate, slightly sinuous, with 4 sterigmata and a basal clamp connection, $31-40 \times 6-8$ µm; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores subglobose to globose, thin-walled, colorless, smooth, IKI–, CB–, $(7-)7.5-9(-9.2) \times (5.7-)6-7.8$ µm, L = 8.34 µm, W = 6.82 µm, Q = 1.22 (n = 30/1).

Notes – Based on the ITS+nLSU data (Fig. 2), the new species *Dendrothele yunnanensis* is grouped into *Dendrothele*, and is clustered with *D. americana* Nakasone and *D. griseocana* (Bres.) Bourdot & Galzin. However, *D. americana* can be delimited from *D. yunnanensis* by its greyish yellow to yellowish grey hymenial surface, and its obclavate to vesiculose basidia ($25-55 \times 7-12 \mu m$, Nakasone 2006). *Dendrothele griseocana* can be delimited from *D. yunnanensis* by its greyish or ochraceous hymenial surface, shorter basidia ($20-30 \times 6-8 \mu m$) and longer basidiospores ($9-11 \times 7-8 \mu m$, Bernicchia & Gorjón 2010).

Radulomycetaceae Leal-Dutra, Dentinger & G.W. Griff.

Index Fungorum number: IF831047; Facesoffungi number: FoF15392 Type genus – *Radulomyces* M.P. Christ.

Radulomyces M.P. Christ.

Index Fungorum number: IF18442; Facesoffungi number: FoF15393 Type species – *Radulomyces confluens* (Fr.) M.P. Christ.

Notes – Radulomyces M.P. Christ. was introduced by Christiansen (1960) and is typified by R. confluens (Fr.) M.P. Christ. Larsson et al. (2004) showed that Coronicium alboglaucum (Bourdot & Galzin) Jülich, R. confluens, R. molaris (Chaillet ex Fr.) M.P. Christ. and R. rickii (Bres.) M.P. Christ. nested within the euagarics clade. The placement of two genera *Aphanobasidium* Jülich and *Radulomyces* were previously located in the family Pterulaceae by the phylogenetic reconstructions of corticioid taxa (Larsson et al. 2004, Larsson 2007a). Phylogenetically, *Radulomyces* belonged in the Pterulaceae (Agaricales) and was most closely related to *Radulotubus* Y.C. Dai, S.H. He & C.L. Zhao and *Aphanobasidium* (Zhao et al. 2016a). These three genera form a strongly supported clade sister to the *Pterula-Deflexula-Pterulicium-Merulicium-Coronicium* clade based on sequence analyses of ITS+nLSU (Zhao et al. 2016a, Wang et al. 2018b). Based on the phylogenetical and morphological analysis, Leal-Dutra et al. (2020) revealled that no members of the three genera within this superclade were pteruloid (i.e. coralloid basidiomes with dimitic hyphal system) in their morphology and then consequently they proposed the new family Radulomycetaceae to accommodate them. In the present study, based on the ITS+nLSU data (Fig. 3) and morphological characteristics, three new species *R. hydnoides*, *R. yunnanensis* and *R. zixishanensis* spp. nov. are introduced.

Figure 22 – Basidiomata of *Dendrothele yunnanensis* (holotype). Scale bars: a = 1 cm, b = 0.5 mm.

Figure 23 – Microscopic structures of *Dendrothele yunnanensis* (drawn from the holotype). a Basidiospores. b Dendrohyphidia. c Basidia and basidioles. d A section of hymenium. Scale bars: $a-d = 10 \ \mu m$.

Radulomyces hydnoides J.H. Dong & C.L. Zhao, sp. nov.

Figs 24, 25

Index Fungorum number: IF850315; Facesoffungi number: FoF15394

Diagnosis – Differs from other *Radulomyces* species by the corneous basidiomata with orange to ochraceous, hydnoid hymenial surface, monomitic hyphal system with clamped generative hyphae and subglobose to globose basidiospores measuring $7.5-9 \times 6-7-8.7 \mu m$.

Etymology – *hydnoides* (Lat.): referring to the hydnoid hymenophore of the type specimen.

Type – China, Yunnan Province, Lijiang, Heilongtan Park, Xiangshan, GPS coordinates 26°53' N, 100°14' E, altitude 2500 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 21 July 2021, CLZhao 21632 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, corneous, without odor or taste, becoming hard coriaceous upon drying, up to 10 cm long, 3 cm wide, $50-200 \mu m$ thick. Hymenial surface hydnoid, slightly orange when fresh, turning to orange to ochraceous upon drying. Sterile margin cream to slightly orange, abrupt, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin to thick-walled, arranged in a parallel structure, $2-4 \mu m$ in diameter; IKI–, CB–, tissues unchanged in

KOH. Hyphal ends frequently present in the basidial layer; cystidia and cystidioles absent. Basidia subclavate, slightly sinuous, with 4 sterigmata and a basal clamp connection, with abundant oil droplets, $21-34 \times 8.5-12.5 \mu m$; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores subglobose to globose, colorless, thin to slightly thick-walled, smooth, with abundant oil contents, IKI–, CB+, (7.2–)7.5–9(–9.5) × (–6.8)7–8.7(–9.5) μm , L = 8.14 μm , W = 7.81 μm , Q = 1.04–1.07 (n = 120/4).

Material examined (paratypes) – China, Yunnan Province, Lijiang, Lashihai Nature Reserve, Meiquan Village, GPS coordinates 26°53' N, 100°9' E, altitude 2450 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 19 July 2021, CLZhao 21337; on the trunk of angiosperm, leg. C.L. Zhao, 19 July 2021, CLZhao 21351; Lijiang, Heilongtan Park, Xiangshan, GPS coordinates 26°53' N, 100°14' E, altitude 2500 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 21 July 2021, CLZhao 21668, CLZhao 21815 (SWFC).

Figure 24 – Basidiomata of *Radulomyces hydnoides* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Figure 25 – Microscopic structures of *Radulomyces hydnoides* (drawn from the holotype). a Basidiospores. b Basidia. c Basidioles. d A section of hymenium. Scale bars: $a-d = 10 \mu m$.

Notes – Based on the ITS+nLSU data (Fig. 3), the new species *Radulomyces hydnoides* grouped with *Radulomyces* species, and forming a monophyletic lineage.

Radulomyces hydnoides resembles *R. copelandii* (Pat.) Hjortstam & Spooner and *R. paumanokensis* J. Horman, Nakasone & B. Ortiz in sharing subglobose to globose basidiospores. However, *R. copelandii* differs from *R. hydnoides* due to its white hymenial surface, its narrower basidia (29–35 × 6–7 μ m) and smaller basidiospores (6.4–7 × 5.4–6.2 μ m, Ginns & Millman 2011); *R. paumanokensis* can be distinguished from *R. hydnoides* by its orange white to pale orange hymenial surface, its narrower basidia (25–31 × 5–7.5 μ m) and smaller basidiospores (5.8–6.9 × 5.2–6.4 μ m, Wang et al. 2018b).

Radulomyces yunnanensis J.H. Dong & C.L. Zhao, sp. nov.

Figs 26, 27

Index Fungorum number: IF850316; Facesoffungi number: FoF15395

Diagnosis – Differs from other *Radulomyces* species by the coriaceous basidiomata with cream, smooth hymenial surface with deep ravine, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $8.2-9.5 \times 5.5-7 \mu m$.

Etymology - yunnanensis (Lat.): referring to the locality (Yunnan Province) of the type specimen.

Type – China, Yunnan Province, Kunming, Xishan District, Haikou Forestry Park, GPS coordinates 24°48' N, 102°36' E, altitude 2300 m asl., on the fallen branch of *Quercus*, leg. C.L. Zhao, 22 April 2017, CLZhao 1262 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, coriaceous, without odor or taste, becoming hard coriaceous upon drying, up to 15 cm long, 5 cm wide, $100-250 \mu m$ thick. Hymenial surface smooth, cracked with deep ravine, slightly cream when fresh, turning cream upon drying. Sterile margin narrow, slightly cream, abrupt, up to 0.5 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, branched, arranged in a parallel structure, 2.5–4 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Hyphal ends frequently present in the basidial layer; cystidia and cystidioles absent. Basidia subclavate, slightly sinuous, some with a few guttulae, with 4 sterigmata and a basal clamp connection, with abundant oil content 24–35 × 7–11 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores ellipsoid, colorless, thin-walled, smooth, with oily granular content, IKI–, CB–, (7.5–)8.2–9.5(–10) × (5–)5.5–7(–7.5) μ m, L = 8.89 μ m, W = 6.26 μ m, Q = 1.42–1.51 (n = 150/5).

Figure 26 – Basidiomata of *Radulomyces yunnanensis* (holotype). Scale bars: a = 1 cm, b = 2 mm.

Figure 27 – Microscopic structures of *Radulomyces yunnanensis* (drawn from the holotype). a Basidiospores. b Basidia. c Basidioles. d A section of hymenium. Scale bars: $a-d = 10 \mu m$.

Material examined (paratypes) – China, Yunnan Province, Chuxiong, Zixishan Forestry Park, GPS coordinates 25°01' N, 101°24' E, altitude 2500 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 2 July 2018, CLZhao 7364; Qujing, Liaokuo Park, GPS coordinates 25°01' N, 101°24' E, altitude 2000 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 26 August 2022, CLZhao 24040; Qujing, Qilin District, Cuishan Forest Park, GPS coordinates 25°32' N, 103°42' E, altitude 2250 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 5 November 2022, CLZhao 26685, 6 November 2022, CLZhao 27046, CLZhao 27069 (SWFC).

Notes – Based on ITS+nLSU data (Fig. 3), *Radulomyces yunnanensis* grouped with *Radulomyces* species, where it formed a monophyletic lineage.

Radulomyces yunnanensis resembles *R. fuscus* (W.B. Cooke) Ginns and *R. tantalusensis* Gilb. & Nakasone in having the smooth hymenial surface. However, *R. fuscus* differs from *R. yunnanensis* due to its pale orange-brown to orange-yellow hymenial surface, and its longer basidia (35–65 × 8–10 μ m, Ginns 1976). *Radulomyces tantalusensis* can be distinguished from *R. yunnanensis* by its yellow-ocherous hymenial surface, and its longer basidiospores (10–12 × 4–5 μ m, Gilbertson et al. 2003).

Radulomyces zixishanensis J.H. Dong & C.L. Zhao, sp. nov.

Figs 28, 29

Index Fungorum number: IF850317; Facesoffungi number: FoF15396

Diagnosis – Differs from other *Radulomyces* species by the hard coriaceous basidiomata with cream to slightly brown, smooth hymenial surface with numerous deep ravines, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $7-8.8 \times 5.5-6.8 \mu m$.

Etymology – zixishanensis (Lat.): referring to the locality (Zixishan) of the type specimen.

Type – China, Yunnan Province, Chuxiong, Zixishan National Forestry Park, GPS coordinates 25°01' N, 101°24' E, altitude 2500 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 2 July 2021, CLZhao 21127 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, coriaceous, without odor or taste, becoming hard coriaceous upon drying, up to 15 cm long, 5 cm wide, $150-250 \mu m$ thick. Hymenial surface smooth, cracked with numerous deep ravines, cream when fresh, turning cream to slightly brown upon drying. Sterile margin narrow, cream, abrupt, up to 1 mm wide.

Figure 28 – Basidiomata of *Radulomyces zixishanensis* (holotype). Scale bars: a = 1 cm, b = 2 mm.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, branched, interwoven, 3–4 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia and cystidioles absent. Basidia clavate, with 4 sterigmata and a basal clamp connection, 28–43 × 6.5–8.5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores

ellipsoid, colorless, thin-walled, smooth, with an oildrop, IKI–, CB–, 7–8.8(–9) × 5.5–6.8(–7) μ m, L = 8.08 μ m, W = 6.26 μ m, Q = 1.29 (n = 30/1).

Notes – *Radulomyces zixishanensis* grouped with *Radulomyces* species based on the ITS+nLSU data (Fig. 3), and formed a monophyletic lineage.

Radulomyces zixishanensis resembles *R. arborifer* Malysheva & Zmitr. and *R. molaris* (Chaillet ex Fr.) M.P. Christ. in sharing ellipsoid basidiospores. However, *R. arborifer* differs from *R. zixishanensis* due to its dendroid or coralloid hymenial surface, and its slightly thick-walled basidiospores (7–10 × 5–6.5 μ m, Malysheva 2006); *R. molaris* can be distinguished from *R. zixishanensis* by its hydnoid hymenial surface, and its slightly thick-walled basidiospores (8–12 × 6–8 μ m, Bernicchia & Gorjón 2010).

Type genus – Corticium Pers.

Figure 29 – Microscopic structures of *Radulomyces zixishanensis* (drawn from the holotype). a Basidiospores. b Basidia. c Basidioles. d A section of hymenium. Scale bars: $a-d = 10 \mu m$.

Corticiales K.H. Larss.

Corticiaceae Herter

Index Fungorum number: IF80648; Facesoffungi number: FoF15397

Corticium Pers.

Index Fungorum number: IF17387; Facesoffungi number: FoF15398 Type species – *Corticium roseum* Pers.
Notes – *Corticium* Pers. was erected by Persoon (1794) and is typified by *C. roseum* Pers. With the emergence of the molecular data, the genus has become more narrowly defined as many species were transferred to other genera, families and orders (Ghobad-Nejhad et al. 2021). The taxonomic studies for the genus *Corticium* contributed to the definition of *Corticium* in its strict sense (Boidin et al. 1968, Boidin & Lanquetin 1984, Boidin & Gilles 1998), and later, mycologists revealed the concept of *Laeticorticium* Donk based on further research (Larsen & Gilbertson 1974, 1978, Larsen & Nakasone 1984, Duhem & Michel 2006, 2009). Ghobad-Nejhad et al. (2021) confirmed that the genus *Corticium* was monophyletic. In the present study, one new species of *Corticium* is described from China based on morphological characteristics and phylogenetic analyses inferred from ITS+nLSU sequences (Fig. 4).

Corticium roseoalbum J.H. Dong & C.L. Zhao, sp. nov.

Figs 30, 31

Index Fungorum number: IF850318; Facesoffungi number: FoF15399

Diagnosis – Differs from other *Corticium* species by the leathery basidiomata with white to slightly pinkish, tuberculate hymenial surface, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $11.5-16.5 \times 8-11 \,\mu\text{m}$.

Etymology – *roseoalbum* (Lat.): referring to the white to pinkish hymenial surface of the type specimen

Type – China, Yunnan Province, Kunming, Southwest Forestry University, GPS coordinates 25°06' N, 102°57' E, altitude 1950 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 17 January 2019, CLZhao 13525 (SWFC, holotype).

Description – Basidiomata annual, resupinate, soft coriaceous, without odor or taste, becoming leathery upon drying, up to 6.5 cm long, 4 cm wide, 0.1–0.5 mm thick. Hymenial surface tuberculate, white to slightly pinkish when fresh, turning pinkish upon drying. Sterile margin narrow, white to slightly pinkish, thinning out, up to 0.5 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, interwoven, 3.5–4 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia and cystidioles absent. Basidia clavate, with 4 long and short sterigmata and a basal clamp connection, 49–65 × 9.5–14 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores ellipsoid, colorless, thin-walled, smooth, IKI–, CB–, (11–)11.5–16.5(–17) × 8–11(–11.5) μ m, L = 14.06 μ m, W = 9.65 μ m, Q = 1.45 (n = 30/1).

Notes – *Corticium roseoalbum* grouped with *Corticium* species based on the ITS+nLSU data (Fig. 4) where *C. roseoalbum* is sister to *C. thailandicum* Ghobad-Nejhad. However, *C. thailandicum* can be delimited from *C. roseoalbum* by its smooth hymenial surface, and its subglobose basidiospores $(10-13 \times 7-9 \mu m$, Ghobad-Nejhad et al. 2021).

Hymenochaetales Oberw.

Hymenochaetaceae Donk

Index Fungorum number: IF536196; Facesoffungi number: FoF15400 Type genus – *Hymenochaete* Lév.

Hydnoporia Murrill

Index Fungorum number: IF17793; Facesoffungi number: FoF15401

Type species – Hydnoporia fuscescens (Schwein.) Murrill

Notes – *Hydnoporia* Murrill was introduced by Murrill (1907) and is typified by *H. fuscescens* (Schwein.) Murrill. *Hydnoporia* can morphologically be divided into two groups, the effused-reflexed species and resupinate species; however, phylogenetic analyses showed that this is not supported (Miettinen et al. 2019). Miettinen et al. (2019) used morphology and phylogenetic analyses to discuss 13 *Hydnoporia* species, including one new species and 12 combined species. In the present study, based on the ITS, nLSU, mtSSU, RPB1, RPB2, TEF1 and ITS data (Figs 5, 6),

the genus *Hydnoporia* nested in Hymenochaetaceae, in which two new species *H. pinicola* and *H. yunnanensis* are reported.

Hydnoporia pinicola J.H. Dong & C.L. Zhao, sp. nov.

Figs 32, 33

Index Fungorum number: IF850319; Facesoffungi number: FoF15402

Diagnosis – Differs from other *Hydnoporia* species by the leathery basidiomata with greyishbrown, labyrinthine hymenial surface with numerous crevices, monomitic hyphal system with septate generative hyphae and cylindrical basidiospores measuring $3.7-5.2 \times 2-2.7 \mu m$.

Etymology - pinicola (Lat.): referring to grow on the Pinus yunnanensis of the type specimen.

Type – China, Yunnan Province, Qujing, Zhanyi District, Lingjiao Town, Xiajia Village, GPS coordinates 25°58′ N, 103°47′ E, altitude 2000 m asl., on the fallen branch of *Pinus yunnanensis*, leg. C.L. Zhao, 6 March 2023, CLZhao 27180 (SWFC, holotype).

Figure 30 – Basidiomata of *Corticium roseoalbum* (holotype). Scale bars: a = 2 cm, b = 2 mm.

Figure 31 – Microscopic structures of *Corticium roseoalbum* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c A section of hymenium. Scale bars: $a-c = 10 \mu m$.

Description – Basidiomata annual, resupinate, without odor or taste, soft leathery when fresh, becoming leathery upon drying, up to 10 cm long, 1.5 cm wide, 50–100 μ m thick. Hymenial surface labyrinthine, with numerous crevices, slightly brown when fresh, turning to greyish-brown upon drying. Sterile margin grey, abrupt, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with simple septa, yellowish, thick-walled, frequently branched, interwoven, $3.5-5.5 \ \mu m$ in diameter; IKI–, CB–, tissues darkening in KOH. Cystidia and cystidioles absent. Hymenial setae abundant, subulate, reddish-brown, thick-walled, smooth with obtuse tip, $55-112 \times 9-18 \ \mu m$, projecting above the hymenium. Basidia clavate, constricted, with 4 sterigmata and a basal simple septum, $15-27 \times 3.5-5 \ \mu m$; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores cylindrical, colorless, thin-walled, smooth, IKI–, CB–, $(3.3-)3.7-5.2 \times (1.8-)2-2.7(-2.9) \ \mu m$, L = 4.29 \ \mu m, W = 2.31 \ \mu m, Q = 1.75-1.86 (n = 120/4).

Material examined (paratypes) – China, Yunnan Province, Dali, Weishan County, Qinghua Town, Green peacock Reserve (Jiangzui Village), GPS coordinates 25°01' N, 100°11' E, altitude 1500 m asl., on the fallen branch of *Pinus yunnanensis*, leg. C.L. Zhao, 18 July 2022, CLZhao 22505; Qujing, Zhanyi District, Lingjiao Town, Xiajia Village, GPS coordinates 25°58' N, 103°47' E, altitude 2000 m asl., on the fallen branch of *Pinus yunnanensis*, leg. C.L. Zhao, 6 March 2023, CLZhao 27154, CLZhao 27175(SWFC).

Notes – *Hydnoporia pinicola* grouped in *Hydnoporia* based on the ITS, nLSU, mtSSU, RPB1, RPB2 and TEF1 data (Fig. 5), within the family Hymenochaetaceae. Based on ITS data (Fig. 6), *H. pinicola* is sister to *H. gigasetosa* (Parmasto) Miettinen & K.H. Larss. *Hydnoporia gigasetosa* can be delimited from *H. pinicola* by its smooth and fimbriate hymenial surfac, and its longer basidiospores ($6-8 \times 1.5-2 \mu m$, Yang et al. 2016).

Hydnoporia pinicola shares similarities with *H. corrugata* (Fr.) K.H. Larss. & Spirin in sharing cylindrical basidiospores. However, *H. corrugata* differs from *H. pinicola* due to its granulose hymenial surface, and its narrower basidiospores $(4.5-5 \times 1.5-2 \ \mu m$, Bernicchia & Gorjón 2010).

Figure 32 – Basidiomata of *Hydnoporia pinicola* (holotype). Scale bars: a = 1 cm, b = 0.5 mm.

Hydnoporia yunnanensis J.H. Dong & C.L. Zhao, sp. nov. Index Fungorum number: IF850320; Facesoffungi number: FoF15403 Figs 34, 35

Diagnosis – Differs from other *Hydnoporia* species by the soft coriaceous to leathery basidiomata with dark brown, smooth hymenial surface, monomitic hyphal system with septate generative hyphae and allantoid basidiospores measuring $6-8.5 \times 1.8-2.8 \mu m$.

Etymology - yunnanensis (Lat.): referring to the locality (Yunnan Province) of the type specimen.

Figure 33 – Microscopic structures of *Hydnoporia pinicola* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Setae. d A section of hymenium. Scale bars: $a = 5 \mu m$, $b-d = 10 \mu m$.

Type – China, Yunnan Province, Puer, Zhenyuan County, Heping Town, Damoshan, GPS coordinates 23°07' N, 101°03' E, altitude 2150 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 16 January 2018, CLZhao 6123 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, without odor or taste, soft coriaceous when fresh, becoming leathery upon drying, up to 15 cm long, 5 cm wide, 100–200 μ m thick. Hymenial surface smooth, usually densely cracked with age, cinnamon to clay-buff when fresh, turning to dark brown upon drying. Sterile margin slightly brown, abrupt, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with simple septa, yellowish brown, thick-walled, occasionally branched, interwoven, 4–7.5 μ m in diameter; IKI–, CB–, tissues darkening in KOH. Cystidia and cystidioles absent. Hymenial setae abundant, subulate, reddish brown, thick-walled, smooth with obtuse tip, 50–125 × 8–19 μ m, projecting above the hymenium. Basidia subclavate, constricted, with 4 sterigmata and a basal simple septum, 20–24 × 3.5–5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores allantoid, colorless, thin-walled, smooth, IKI–, CB–, (5.5–)6–8.5(–9) × 1.8–2.8 μ m, L = 7.13 μ m, W = 2.34 μ m, Q = 2.72–3.43 (n = 120/4).

Material examined (paratypes) – China, Yunnan Province, Puer, Zhenyuan County, Heping Town, Liangzizhai Village, GPS coordinates 25°01' N, 101°24' E, altitude 2500 m asl., on the

fallen branch of angiosperm, leg. C.L. Zhao, 15 January 2018, CLZhao 5942; Yuxi, Xinping County, Mopanshan National Forestry Park, GPS coordinates 23°51' N, 101°16' E, altitude 1700 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 18 January 2018, CLZhao 6227; Wenshan, Xichou County, Xiaoqiaogou, National Nature Reserve, GPS coordinates 23°22' N, 104°45' E, altitude 2500 m asl., 15 January 2019, CLZhao 10896 (SWFC).

Notes – *Hydnoporia yunnanensis* grouped in *Hydnoporia* (Hymenochaetaceae) based on the ITS, nLSU, mtSSU, RPB1, RPB2 and TEF1 data (Fig. 5). Based on ITS data (Fig. 6), *H. yunnanensis* forming a monophyletic lineage.

Figure 34 – Basidiomata of *Hydnoporia yunnanensis* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Hydnoporia yunnanensis shares similarities with H. latesetosa (S.H. He & Hai J. Li) Miettinen & K.H. Larss., H. rhododendri (Corfixen & Parmasto) Spirin & Miettinen and H. subrigidula (S.H. He & Hai J. Li) Miettinen & K.H. Larss. in sharing allantoid basidiospores. However, H. latesetosa differs from H. yunnanensis by its pale mouse gray, ash-gray to fawn hymenial surface, and shorter basidia ($15-20 \times 3.5-4 \mu m$, He & Li 2013); *H. rhododendri* differs from *H. yunnanensis* by its pale brown hymenial surface, and smaller basidiospores ($3.9-5.2 \times 1.2-1.6 \mu m$, Miettinen et al. 2019); *H. subrigidula* differs from *H. yunnanensis* by its slightly tuberculate hymenial surface, and shorter basidia ($10-20 \times 2.8-4 \mu m$, He & Li 2013).

Figure 35 – Microscopic structures of *Hydnoporia yunnanensis* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Setae. d A section of hymenium. Scale bars: $a-d = 10 \mu m$.

Peniophorellaceae L.W. Zhou, Xue W. Wang & S.L. Liu

Index Fungorum number: IF900252; Facesoffungi number: FoF14026 Type genus – *Peniophorella* P. Karst.

Peniophorella P. Karst.

Index Fungorum number: IF18202; Facesoffungi number: FoF15404 Type species – *Peniophorella pubera* (Fr.) P. Karst.

Notes – *Peniophorella* was introduced as a monotypic genus typified by *P. pubera* (Karsten 1889). Molecular studies of *Hyphoderma* Wallr. revealed that the reinstatement of *Peniophorella* resulted in 19 new combinations in *Peniophorella* and all species nested into the hymenochaetoid clade (Larsson 2007b). Miettinen & Larsson (2011) revealed that *P. praetermissa* (P. Karst.) K.H.

Larss. and *P. tsugae* (Burt) K.H. Larss. grouped together and clustered into Hymenochaetales. Telleria et al. (2012) studied *Hyphoderma* and its discrimination from closely related taxa and revealed that eight *Peniophorella* species were closely grouped and were distinct from *Hyphoderma* s.s. Justo et al. (2017) revised the family-level classification of the order Polyporales (Basidiomycota) and proposed that 20 species were classified in *Peniophorella* located in the family Hyphodermataceae (Hymenochaetales). Morphological studies and phylogenetic analyses showed six new taxa of *Peniophorella* and displayed the taxonomic status for the new taxa within the genus (Guan et al. 2020, Xu et al. 2020a, Yurchenko et al. 2020b). Wang et al. (2023) proposed that the genus *Peniophorella* should be transferred to a new family Peniophorellaceae. In the present study, based on the ITS, nLSU and mtSSU data (Fig. 7), two new species *P. daweishanensis* and *P. olivacea* are introduced.

Peniophorella daweishanensis J.H. Dong & C.L. Zhao, sp. nov.

Figs 36, 37

Index Fungorum number: IF850322; Facesoffungi number: FoF15405

Diagnosis – Differs from other *Peniophorella* species by the soft coriaceous basidiomata with buff to slightly yellowish, reticulate hymenial surface, monomitic hyphal system with clamped generative hyphae and cylindrical to ellipsoid basidiospores measuring $8.5-10 \times 4-5 \mu m$.

Etymology - daweishanensis (Lat.): referring to the locality (Daweishan) of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 6 June 2020, CLZhao 18600 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, without odor or taste, soft coriaceous when fresh, becoming coriaceous upon drying, up to 10 cm long, 2 cm wide, 50–150 μ m thick. Hymenial surface reticulate, cream when fresh, turning buff to slightly yellowish upon drying. Sterile margin cream, thinning out, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, branched, 4–5.5µm in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia of two types: (1) capitate, thin-walled, smooth, tapered and obtuse apex, $52–63 \times 6.5–7.5$ µm, projecting above the hymenium; (2) clavate, thin-walled, smooth, $26–36 \times 12.5–17$ µm; cystidioles absent. Basidia subclavate, slightly constricted, with 4 sterigmata and a basal clamp connection, $31.5–38 \times 7–9$ µm; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores cylindrical to ellipsoid, colorless, thin-walled, smooth, IKI–, CB–, $(8–)8.5–10(-10.5) \times (3.5–)4–5(-5.5)$ µm, L = 9.19 µm, W = 4.49 µm, Q = 2.05 (n = 30/1).

Notes – *Peniophorella daweishanensis* is grouped into *Peniophorella* based on the ITS, nLSU and mtSSU data (Fig. 7), and is revealed as a sister to *P. echinocystis* (J. Erikss. & Å. Strid) K.H. Larss. *Peniophorella echinocystis* can be delimited from *P. daweishanensis* by its odontioid hymenial surface, smaller basidia (25–30 × 6–7 μ m) and wider basidiospores (9–11 × 5–6 μ m, Bernicchia & Gorjón 2010).

Peniophorella daweishanensis resembles *P. pallida* (Bres.) K.H. Larss. in having a smooth hymenial surface. However, *P. pallida* differs from *P. daweishanensis* due to its pale brownish to reddish brown hymenial surface, smaller basidia $(20-25 \times 5-6 \ \mu\text{m})$ and narrower basidiospores $(7-10 \times 2.5-3.5 \ \mu\text{m})$, Bernicchia & Gorjón 2010).

Peniophorella olivacea J.H. Dong & C.L. Zhao, sp. nov.

Figs 38, 39

Index Fungorum number: IF850323; Facesoffungi number: FoF15406

Diagnosis – Differs from other *Peniophorella* species by the farinaceous basidiomata with greyish olivaceous, smooth hymenial surface, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $6.5-7.5 \times 3.2-4.5 \,\mu\text{m}$.

Etymology – *olivacea* (Lat.): referring to the olivaceous hymenial surface of the type specimen.

Type – China, Yunnan Province, Qujing, Qilin District, Cuishan Forest Park, GPS coordinates 25°32' N, 103°42' E, altitude 2250 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 27 October 2022, CLZhao 25896 (SWFC).

Description – Basidiomata annual, resupinate, adnate, without odor or taste, ceraceous when fresh, becoming farinaceous upon drying, up to 10 cm long, 2.5 cm wide, 50–100 μ m thick. Hymenial surface smooth, grey when fresh, turning to greyish olivaceous upon drying. Sterile margin grey, thinning out, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, $3.5-4.5 \mu m$ in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia of two types: (1) fusiform, thin to thick-walled, smooth, $28.5-39 \times 8.5-11 \mu m$; (2) halocystidia, thin-walled, smooth, $42-50 \times 8-9 \mu m$, projecting above the hymenium; cystidioles absent.

Figure 36 – Basidiomata of *Peniophorella daweishanensis* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Figure 37 – Microscopic structures of *Peniophorella daweishanensis* (drawn from the holotype). a Basidiospores. b Clavate cystidia. c Capitate cystidia. d Basidia and basidioles. e A section of hymenium. Scale bars: $a-e = 10 \mu m$.

Basidia clavate, some with guttula, with 4 sterigmata and a basal clamp connection, $17.5-20 \times 6-7$ µm; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores ellipsoid, colorless, thin-walled, smooth, sometimes with one guttula, IKI–, CB–, (6–)6.5–7.5(–8) × 3.2–4.5(–5) µm, L = 6.94 µm, W = 3.84 µm, Q = 1.81 (n = 30/1).

Material examined (paratype) – China, Yunnan Province, Dehong, Yingjiang County, Tongbiguan Provincial Nature Reserve, GPS coordinates 25°52' N, 97°38' E, altitude 1000 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 19 July 2023, CLZhao 30245 (SWFC).

Notes – Based on the ITS, nLSU and mtSSU data (Fig. 7), the new species *Peniophorella* olivacea is grouped with *Peniophorella* species and is revealed as a sister to *P. subpraetermissa* (Sheng H. Wu) K.H. Larss. *Peniophorella subpraetermissa* can be delimited from *P. olivacea* by its cream-colored to slightly purplish hymenial surface, and longer basidia (20–35 × 6–8 μ m, Wu 1997).

Peniophorella olivacea resembles *P. yunnanensis* C.L. Zhao in having ellipsoid basidiospores. However, *P. yunnanensis* differs from *P. olivacea* due to its grandinioid hymenial surface, and larger basidiospores ($8-9 \times 4.5-5.5 \mu m$, Guan et al. 2020).

Schizoporaceae Jülich

Index Fungorum number: IF80038; Facesoffungi number: FoF15407 Type genus – *Schizopora* Velen.

Lyomyces P. Karst.

Index Fungorum number: IF18000; Facesoffungi number: FoF15408 Type species – *Lyomyces sambuci* (Pers.) P. Karst.

Notes – The genus Lyomyces P. Karst. was introduced by Karsten (1881) and is typified by L. sambuci (Pers.) P. Karst. Six well-distinguished clades viz the Lagarobasidium clade,

Kneiffiella-Alutaceodontia clade, Hyphodontia clade, Hastodontia clade, Xylodon-Lyomyces, Rogersella clade, and Xylodon-Schizopora-Palifer clade, were included based on the phylogenetical studies of Hyphodontia s.l., in which the genera Xylodon and Lyomyces nested within the Xylodon-Lyomyces-Rogersella clade and Xylodon-Schizopora-Palifer clade, respectively (Yurchenko & Wu 2016). Riebesehl & Langer (2017) revealed that Hyphodontia s.l. was divided into six genera, viz., Hastodontia (Parmasto) Hjortstam & Ryvarden, Hyphodontia J. Erikss, Kneiffiella P. Karst, Lagarobasidium Jülich, Lyomyces, and Xylodon, in which 35 new combinations were proposed, including 14 Lyomyces species. Yurchenko et al. (2017) clarified the Lyomyces sambuci complex based on analysis of ITS+nLSU sequences, and described four new species. Riebesehl et al. (2019) clarified the generic concept and their phylogenetic reconstruction of Lyomyces, in which L. sambuci was sister to L. crustosus (Pers.) P. Karst. Chen & Zhao (2020) utilized morphological and molecular evidence and indicated that four new resupinate species clustered into the genus Lyomyces. Based on a combination of morphological and molecular

Figure 38 – Basidiomata of *Peniophorella olivacea* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Figure 39 – Microscopic structures of *Peniophorella olivacea* (drawn from the holotype). a Basidiospores. b Fusiform cystidia. c Halocystidia cystidia. d Basidia and basidioles. e A section of hymenium. Scale bars: $a-e = 10 \mu m$.

evidence, the wood-inhabiting Fungal Diversity within the family Schizoporaceae of the order Hymenochaetales were analyzed, including *Lyomyces fissuratus* C.L. Zhao, *L. fumosus* C.L. Zhao, *L. niveus* C.L. Zhao and *L. ochraceoalbus* C.L. Zhao (Luo et al. 2021b, c). The morphological and molecular studies of Schizoporaceae, in which five new species were described, including *L. albopulverulentus* C.L. Zhao and *L. yunnanensis* C.L. Zhao (Guan et al. 2023). In the present study, based on the ITS+nLSU data (Fig. 8), *Loymyces* were grouped with several genera as *Fasciodontia*, *Hyphodontia*, *Kneiffielle* and *Xylodon*, in which six new species *L. daweishanensis*, *L. incanus*, *L. lincangensis*, *L. luteoalbus*, *L. qujingensis* and *L. sinensis* spp. nov. are grouped into the genus *Lyomyces*.

Lyomyces daweishanensis J.H. Dong & C.L. Zhao, sp. nov.

Index Fungorum number: IF850324; Facesoffungi number: FoF15409

Diagnosis – Differs from other *Lyomyces* species by the farinaceous basidiomata with white to cream, smooth hymenial surface, monomitic hyphal system with clamped generative hyphae and ellipsoid to subglobose basidiospores measuring $9-11.5 \times 6-7.5 \,\mu\text{m}$.

Etymology - daweishanensis (Lat.): referring to the locality (Daweishan) of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 3 August 2019, CLZhao 18344 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, farinaceous when fresh and drying, without odor or taste when fresh, up to 5 cm long, 1.5 cm wide, 50–150 μ m thick. Hymenial surface smooth, pruinose, white when fresh, turning white to cream upon drying. Sterile margin thin, white, thinning out, up to 1 mm wide.

Figs 40, 41

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, interwoven, 2.5–4.5 μ m in diameter; IKI–, CB–, tissues unchanged in KOH, subhymenial hyphae densely covered by the crystals. Cystidia of two types: (1) clavate, colorless, thin-walled, 11–18 × 7–8.5 μ m; (2) capitate, colorless, thin-walled, smooth, slightly constricted at the neck, with a globose tip, 19–22.5 × 4–6.5 μ m; cystidioles absent. Basidia clavate, with 4 sterigmata and a basal clamp connection, 21.5–36.5 × 6.5–8.5 μ m. Numerous crystals present among hymenium. Basidiospores ellipsoid to subglobose, colorless, thin-walled, smooth, IKI–, CB–, (8.5–)9–11.5(–11.8) × 6–7.5 μ m, L = 10.48 μ m, W = 6.64 μ m, Q = 1.57 (n = 30/1).

Material examined (paratypes) – China, Yunnan Province, Dehong, Yingjiang County, Tongbiguan Provincial Nature Reserve, GPS coordinates 25°52' N, 97°38' E, altitude 1000 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 19 July 2023, CLZhao 30846 (SWFC).

Figure 40 – Basidiomata of *Lyomyces daweishanensis* (holotype). Scale bars: a = 2 cm, b = 2 mm.

Notes – Based on the ITS+nLSU data (Fig. 8), the new species *Lyomyces daweishanensis* is grouped with *Lyomyces* species, and is revealed as a sister to *L. allantosporus* Riebesehl, Yurch. & Langer. *Lyomyces allantosporus* can be distinguished from *L. daweishanensis* by its grandinioid hymenial surface, smaller basidia (12.5–15.5 × 5–5.5 µm) and smaller basidiospores (7–9 × 3–3.8 µm, Yurchenko et al. 2017).

Lyomyces daweishanensis resembles *L. albopulverulentus*, *L. fumosus*, *L. niveus*, *L. ochraceoalbus* and *L. denudatus* Viner in having a smooth hymenial surface. However, *L. albopulverulentus* differs from *L. daweishanensis* due to its brittle basidiomata, and its longer capitate cystidia (37–54 × 5–9 µm, Guan et al. 2023); *L. denudatus* differs from *L. daweishanensis* by its effuse-reflexed basidiomata, both smaller basidia (15–21.1 × 3.8–5.5 µm) and basidiospores (4.8–7 × 2.8–4.2 µm, Viner & Miettinen 2022); *L. fumosus* differs from *L. daweishanensis* due to its smoky grey hymenial surface, both smaller basidia (11.5–17.5 × 3–5 µm) and basidiospores (3.8–6.2 × 3.3–5.4 µm, Luo et al. 2021b); *L. niveus* distinguish from *L. daweishanensis* in its subcoriaceous basidiomata, both smaller basidia (9.5–15 × 3.5–5.5 µm) and basidiospores (3.5–5 × 3–4 µm, Luo et al. 2021c). *Lyomyces ochraceoalbus* differs from *L. daweishanensis* by its pale ochraceous hymenial surface, both smaller basidia (11–16.5 × 3.5–5 µm) and basidiospores (4–5 × 2.5–3.5 µm, Luo et al. 2021c).

Figure 41 – Microscopic structures of *Lyomyces daweishanensis* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Clavate cystidia. d Capitate cystidia. e A section of hymenium. Scale bars: $a-e = 10 \mu m$.

```
Lyomyces incanus J.H. Dong & C.L. Zhao, sp. nov.
```

Index Fungorum number: IF850325; Facesoffungi number: FoF15410

Figs 42, 43

Diagnosis – Differs from other *Lyomyces* species by the furfuraceous basidiomata with incanus, smooth hymenial surface, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $5-6.5 \times 4-5 \mu m$.

Etymology – *incanus* (Lat.): referring to the incanus hymenophore surface of the type specimen.

Type – China, Yunnan Province, Lincang, Fengqing County, Yaojie Town, Xingyuan Village, GPS coordinates 24°58' N, 99°92' E, altitude 1600 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 20 July 2022, CLZhao 22900 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, pruinose when fresh, becoming furfuraceous upon drying, without odor or taste when fresh, up to 4 cm long, 0.6 cm wide, 50–100 μ m thick. Hymenial surface smooth, white to incanus when fresh, turning incanus upon drying. Sterile margin indistinct, slightly incanus, thinning out, up to 0.5 mm wide.

Figure 42 – Basidiomata of *Lyomyces incanus* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, interwoven, 2–3.5 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia of two types: (1) Subcylindrical, colorless, thin-walled, 14–26 × 2–3 μ m; (2) subclavate, colorless, thin-walled, smooth, 17–22 × 4.5–7 μ m; cystidioles absent. Basidia clavate, with 4 sterigmata and a basal clamp connection, 12–20.5 × 4–5 μ m. Subhymenial hyphae densely covered by crystals. Basidiospores ellipsoid, colorless, thin-walled, smooth, with drop, IKI–, CB–, 5–6.5(–7) × 4–5 μ m, L = 5.89 μ m, W = 4.45 μ m, Q = 1.18–1.32 (n = 60/2).

Material examined (paratype) – China, Yunnan Province, Lincang, Fengqing County, Yaojie Town, Xingyuan Village, GPS coordinates 24°58' N, 99°92' E, altitude 1600 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 20 July 2022, CLZhao 22813 (SWFC).

Notes – Based on ITS+nLSU data (Fig. 8), *Lyomyces incanus* grouped with *Lyomyces* species, where it formed a monophyletic lineage.

Figure 43 – Microscopic structures of *Lyomyces incanus* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Subcylindrical cystidia. d Subclavate cystidia. e A section of hymenium. Scale bars: $a-e = 10 \mu m$.

Lyomyces incanus resembles L. capitatocystidiatus (H.X. Xiong, Y.C. Dai & Sheng H. Wu) Riebesehl & Langer, L. fimbriatus (Sheng H. Wu) Riebesehl & Yurchenko, L. mascarensis Riebesehl, Yurchenko & E. Langer, L. organensis Yurchenko & Riebesehl and L. sambuci in having ellipsoid basidiospores. However, L. capitatocystidiatus differs from L. incanus due to its grandinioid hymenial surface, and suburniform basidia (14–23 × 4–5 μ m, Xiong et al. 2009); L. fimbriatus differs from L. incanus by its grandinioid hymenial surface, and utriform to subutriform basidia (16–22 × 3.8–4.5 μ m, Wu 1990); *L. mascarensis* can be distinguished from *L. incanus* in its tuberculate hymenial surface, and narrower basidiospores (4.5–6 × 3.3–4 μ m, Yurchenko et al. 2017); *L. organensis* differs from *L. incanus* by its warted hymenial surface, smaller basidia (11–12.5 × 3.5–4 μ m) and narrower basidiospores (5–6 × 2.5–3.5 μ m, Yurchenko et al. 2017); *L. sambuci* differs from *L. incanus* in its tuberculate hymenial surface, and narrower basidiospores (4.5–6 × 3.5–4 μ m) and narrower basidiospores (5–6 × 2.5–3.5 μ m, Yurchenko et al. 2017); *L. sambuci* differs from *L. incanus* in its tuberculate hymenial surface, and narrower basidiospores (4.5–6 × 3.5–4 μ m, Bernicchia & Gorjón 2010).

Lyomyces lincangensis J.H. Dong & C.L. Zhao, sp. nov.

Figs 44, 45

Index Fungorum number: IF850326; Facesoffungi number: FoF15411

Diagnosis – Differs from other *Lyomyces* species by the coriaceous basidiomata with cream to buff, smooth hymenial surface, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $4.5-6.5 \times 3.5-5 \mu m$.

Etymology – *lincangensis* (Lat.): referring to the locality (Lincang) of the type specimen.

Figure 44 – Basidiomata of *Lyomyces lincangensis* (holotype). Scale bars: a = 1 cm, b = 2 mm.

Type – China, Yunnan Province, Lingcang, Lancangjiang Forestry Region, GPS coordinates 23°48' N, 100°05' E, altitude 2900 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 21 July 2022, CLZhao 22966 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, coriaceous when fresh, becoming hard coriaceous upon drying, without odor or taste when fresh, up to 7.5 cm long, 3cm wide, 100–150 μ m thick. Hymenial surface smooth, cream when fresh, tunning cream to buff when drying. Sterile margin indistinct, white, thinning out, up to 3 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, interwoven, 1.5–4 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia of two types: (1) capitate, colorless, thin-walled, smooth, slightly constricted at the neck, 25.5–32.5 × 4.5–6 μ m; (2) fusiform, colorless, thin-walled, smooth, 26–35 × 2–3 μ m; cystidioles absent. Basidia clavate, with 4 sterigmata and a basal clamp connection, 18–20 × 4.5–6.5 μ m. Numerous crystals present among hymenium. Basidiospores ellipsoid, colorless, thin-walled, smooth, with a droplet inside, IKI–, CB–, 4.5–6.5(–7) × 3.5–5 μ m, L = 5.74 μ m, W = 4.43 μ m, Q = 1.29 (n = 30/1).

Notes – The new species *Lyomyces lincangensis* is grouped within *Lyomyces* based on the ITS+nLSU data (Fig. 8), and is identified as a sister to *L. bambusinus*. *Lyomyces bambusinus* differs from *L. lincangensis* by its colliculose to tuberculate hymenial surface, and its longer capitate cystidia $(35-55 \times 4-7 \mu m, Chen \& Zhao 2020)$.

Figure 45 – Microscopic structures of *Lyomyces lincangensis* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Capitate cystidia. d Fusiform cystidia. e A section of hymenium. Scale bars: $a-e = 10 \mu m$.

Lyomyces lincangensis resembles, L. albopulverulentus, L. cremeus C.L. Zhao, L. mascarensis, L. orientalis Riebesehl, Yurch. & Langer, and L. wuliangshanensis C.L. Zhao have capitate cystidia and ellipsoid basidiospores. However, L. albopulverulentus differs from

L. lincangensis due to its white hymenial surface, larger basidia $(24.5-28.5 \times 7-9 \ \mu\text{m})$ and basidiospores $(8-10.5 \times 5.5-7 \ \mu\text{m})$, Guan et al. 2023); *L. cremeus* differs from *L. lincangensis* by its pale cream hymenial surface, and shorter basidia $(9-18.5 \times 3-6 \ \mu\text{m})$, Chen & Zhao 2020); *L. mascarensis* differs from *L. lincangensis* by its tuberculate hymenial surface, and smaller basidia $(16-17.5 \times 3.5-4.5 \ \mu\text{m})$, Yurchenko et al. 2017); *L. orientalis* differs from *L. lincangensis* by its tuberculate hymenial surface, shorter capitate cystidia $(13-20 \times 3-5 \ \mu\text{m})$ and narrower basidia $(13-20 \times 3.5-4.5 \ \mu\text{m})$, Yurchenko et al. 2017); *L. wuliangshanensis* can be distinguished from *L. lincangensis* by its tuberculate hymenial surface, narrower basidia $(12-20 \times 3-4.3 \ \mu\text{m})$ and thick-walled basidiospores $(3.5-5.3 \times 2.8-4 \ \mu\text{m})$, Chen & Zhao 2020).

Lyomyces luteoalbus J.H. Dong & C.L. Zhao, sp. nov.

Index Fungorum number: IF850327; Facesoffungi number: FoF15412

Figs 46, 47

Figure 46 – Basidiomata of *Lyomyces luteoalbus* (holotype). Scale bars: a = 2 cm, b = 2 mm.

Figure 47 – Microscopic structures of *Lyomyces luteoalbus* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Capitate cystidia. d Tapering cystidia. e A section of hymenium. Scale bars: $a-e = 10 \mu m$.

Diagnosis – Differs from other *Lyomyces* species by the membranaceous basidiomata with white to buff, smooth hymenial surface, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $4.5-6.5 \times 3-4.5 \mu m$.

Etymology – *luteoalbus* (Lat.): referring to the white to buff hymenophore of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 3 August 2019, CLZhao 18347 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, soft membranaceous when fresh, becoming membranaceous upon drying, without odor or taste when fresh, up to 9 cm long, 3 cm wide, 100–150 μ m thick. Hymenial surface smooth, cracked, white when fresh, turning white to buff when drying. Sterile margin indistinct, white, abrupt, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, interwoven, 2–3.5 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia of two types: (1) capitate, colorless, thin-walled, smooth, slightly constricted at the neck, 17–21.5 × 4–7.5 μ m; (2) tapering, colorless, thin-walled, 12–17 × 2–3.5 μ m; cystidioles absent. Subhymenial hyphae densely covered by crystals. Basidia cylindrical to clavate, with 4 sterigmata and a basal clamp connection, 15–18.5 × 3.5–6 μ m. Basidiospores ellipsoid, colorless, thin-walled, smooth, IKI–, CB–, 4.5–6.5(–7.4) × 3–4.5 μ m, L = 5.46 μ m, W = 3.81 μ m, Q = 1.26–1.43 (n = 60/2).

Material examined (paratypes) – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 3 August 2019, CLZhao 18211 (SWFC).

Notes – Based on the ITS+nLSU data (Fig. 8), the new species *Lyomyces luteoalbus* is grouped into *Lyomyces* species, revealing it is clustered with *L. niveus* and *L. yunnanensis*. However, *Lyomyces niveus* can be delimited from *L. luteoalbus* by its niveous hymenial surface, and its shorter basidia (9.5–15 × 3.5–5.5 μ m, Luo et al. 2021c); *L. yunnanensis* be delimited from *L. luteoalbus* by its grandinioid hymenial surface, and its larger tapering cystidia (18–39 × 4–6 μ m, Guan et al. 2023).

Lyomyces luteoalbus resembles five species as L. bambusinus, L. fumosus, L. macrosporus, L. mascarensis, L. wuliangshanensis, in sharing the morphological characters of the capitate cystidia and tapering cystidia. However, L. bambusinus differs from L. luteoalbus due to its colliculose to tuberculate hymenial surface, both larger capitate cystidia ($35-55 \times 4-7 \mu m$) and tapering cystidia ($40-65 \times 4-5.5 \mu m$, Chen & Zhao 2020); L. fumosus differs from L. luteoalbus by its smoky grey hymenial surface, and its larger tapering cystidia ($18.2-50.6 \times 3.8-4.5 \mu m$, Luo et al. 2021b); L. macrosporus differs from L. luteoalbus in its reticulate hymenial surface, its longer basidia ($22.2-38 \times 4.5-7 \mu m$) and larger basidiospores ($6.7-8.9 \times 4.4-5.4 \mu m$, Chen & Zhao 2020); L. mascarensis distinguish from L. luteoalbus in its tuberculate hymenial surface, larger tapering cystidia ($25-30 \times 3.5-4.5 \mu m$) and subcylindrical basidia ($16-17.5 \times 3.5-4.5 \mu m$, Yurchenko et al. 2017); L. wuliangshanensis differs from L. luteoalbus by its tuberculate hymenial surface, longer capitate cystidia ($22-37 \times 3-6 \mu m$) and larger tapering cystidia ($21-35 \times 4-6.5 \mu m$, Chen & Zhao 2020).

Lyomyces qujingensis J.H. Dong & C.L. Zhao, sp. nov.

Index Fungorum number: IF850328; Facesoffungi number: FoF15413

Diagnosis – Differs from other *Lyomyces* species by the pruinose basidiomata with white, smooth hymenial surface, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $6.5-8.5 \times 5.5-7$ µm.

Etymology - qujingensis (Lat.): referring to the locality (Qujing) of the type specimen.

Type – China, Yunnan Province, Qujing, Zhanyi District, Dapo Town, Tuole Village, GPS coordinates 25°57' N, 103°56' E, altitude 1740 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 7 March 2023, CLZhao 27462 (SWFC, holotype).

Description – Basidiomata annual, resupinate, pruinose, without odor or taste when fresh, up to 6.8 cm long, 0.6 cm wide, 50–100 μ m thick. Hymenial surface smooth, white when fresh and upon drying. Sterile margin thin, white to buff, thinning out, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, interwoven, 2.5–4 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia of two types: (1) clavate, colorless, thin-walled, smooth, 16.5–18 × 7.5–8.5 μ m; (2) capitate, colorless, thin-walled, smooth, slightly constricted at the neck, with a globose tip, 40–60 × 4–7.5 μ m; cystidioles absent. Basidia clavate, with 4 sterigmata and a basal clamp connection, 19– 20.5 × 7.5–10 μ m. Numerous crystals present among hymenium. Basidiospores ellipsoid, colorless, thin-walled, smooth, with drop, IKI–, CB–, (6.3–)6.5–8.5 × 5.5–7 μ m, L = 7.78 μ m, W = 6.31 μ m, Q = 1.27 (n = 30/1).

Notes – Based on the ITS+nLSU data (Fig. 8), the new species *Lyomyces qujingensis* is grouped into *Lyomyces* species, revealing it as a sister to *L. albopulverulentus*. However, *L. albopulverulentus* can be distinguished from *L. qujingensis* by its brittle basidiomata, and longer basidia ($24.5-28.5 \times 7-9 \mu m$, Guan et al. 2023).

Lyomyces qujingensis resembles L. capitatocystidiatus, L. fimbriatus, L. mascarensis, L. organensis and L. sambuci in sharing the ellipsoid basidiospores. However, L. capitatocystidiatus differs from L. qujingensis due to its grandinioid hymenial surface, narrower basidia (14–23 × 4–5 μ m) and smaller basidiospores (4.1–5.6 × 3.5–4.3 μ m, Xiong et al. 2009); L. fimbriatus differentiates from L. qujingensis by its grandinioid hymenial surface, both narrower basidia (16–22 × 3.8–4.5 μ m) and basidiospores (5.7–6.7 × 3.5–4.2 μ m, Wu 1990); L. mascarensis can be distinguished from L. qujingensis in its tuberculate hymenial surface, both smaller basidia (16–17.5 × 3.5–4.5 μ m) and basidiospores (4.5–6 × 3.3–4 μ m, Yurchenko et al. 2017);

Figs 48, 49

L. organensis differs from *L. qujingensis* by its warted hymenial surface, smaller basidia (11–12.5 \times 3.5–4 μ m) and basidiospores (5–6 \times 2.5–3.5 μ m, Yurchenko et al. 2017); *L. sambuci* differentiates from *L. qujingensis* in its tuberculate hymenial surface, narrower basidia (20–30 \times 4–5 μ m) and smaller basidiospores (4.5–6 \times 3.5–4 μ m, Bernicchia & Gorjón 2010).

Figure 48 – Basidiomata of *Lyomyces qujingensis* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Lyomyces sinensis J.H. Dong & C.L. Zhao, sp. nov.

Index Fungorum number: IF850329; Facesoffungi number: FoF15414

Diagnosis – Differs from other *Lyomyces* species by the coriaceous basidiomata with cream, smooth hymenial surface, monomitic hyphal system with clamped generative hyphae and broadly ellipsoid to ellipsoid basidiospores measuring $4.5-6 \times 3.5-4.5 \mu m$.

Etymology - sinensis (Lat.): referring to the locality (China) of the type specimen.

Figs 50, 51

Type – China, Yunnan Province, Qujing, Zhanyi District, Yanzhu Village, GPS coordinates 25°50' N, 103°46' E, altitude 1740 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 7 March 2023, CLZhao 27391 (SWFC, holotype).

Description – Basidiomata annual, resupinate, coriaceous when fresh, becoming hard coriaceous upon drying, without odor or taste when fresh, up to 4.5 cm long, 1cm wide, 50–150 μ m thick. Hymenial surface smooth, cracked, slightly cream when fresh, turning cream upon drying. Sterile margin indistinct, white to cream, slightly fimbriate, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, interwoven, 2–4.5 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia of two types: (1) clavate, colorless, thin-walled, smooth, 17–24.5 × 4.5–6.5 μ m; (2) tapering, colorless, thin-walled, 26–32 × 3.5–4.5 μ m; cystidioles absent. Basidia subclavate, with 4 sterigmata and a basal clamp connection, 18.5–24.5 × 4–5.5 μ m. Subhymenial hyphae densely covered by crystals. Basidiospores broadly ellipsoid to ellipsoid, colorless, thin-walled, smooth, with drop, IKI–, CB–, 4.5–6(–6.5) × 3.5–4.5(–4.8) μ m, L = 5.71 μ m, W = 4.23 μ m, Q = 1.28–1.37 (n = 60/2).

Material examined (paratype) – China, Yunnan Province, Qujing, Zhanyi District, Dapo Town, Tuole Village, GPS coordinates25°57' N, 103°56' E, altitude 1590 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 7 March 2023, CLZhao 27464 (SWFC).

Figure 49 – Microscopic structures of *Lyomyces qujingensis* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Clavate cystidia. d Capitate cystidia. e A section of hymenium. Scale bars: $a-e = 10 \mu m$.

Notes – With reference to the ITS+nLSU data (Fig. 8), the new species *Lyomyces sinensis* is grouped into *Lyomyces*, and is clustered with *L. juniperi* (Bourdot & Galzin) Riebesehl & Langer, *L. ochraceoalbus* and *L. vietnamensis* (Yurchenko & Sheng H. Wu) Riebesehl & Langer. However, *L. juniperi* can be distinguished from *L. sinensis* by its grandinioid hymenial surface, and narrower basidiospores $(4.5-5 \times 3-3.5 \ \mu m$, Hjortstam & Ryvarden 2004); *L. ochraceoalbus* can be

delineated from *L. sinensis* by its pale ochraceous hymenial surface, shorter basidia (11–16.5 × 3.5– 5 μ m) and narrower basidiospores (4–5 × 2.5–3.5 μ m, Luo et al. 2021c); *L. vietnamensis* can be distinguished from *L. sinensis* by its grandinioid hymenial surface, utriform to suburniform basidia (17–20 × 3.5–4.5 μ m) and longer basidiospores (6–6.5 × 2.5–3 μ m, Yurchenko et al. 2013).

Lyomyces sinensis shares similarities with L. cremeus, L. fumosus, L. macrosporus and L. mascarensis showing tapering cystidia and ellipsoid basidiospores. However, L. cremeus differs from L. sinensis by its pale cream hymenial surface, and shorter basidia (9–18.5 × 3–6 μ m, Chen & Zhao 2020); L. fumosus differentiates from L. sinensis by its smoky grey hymenial surface, and shorter basidia (11.5–17.5 × 3–5 μ m, Luo et al. 2021b); L. macrosporus can be distinguished from L. sinensis in its reticulate hymenial surface, and larger basidiospores (6.7–8.9 × 4.4–5.4 μ m, Chen & Zhao 2020); L. mascarensis differs from L. sinensis by its tuberculate hymenial surface, and shorter basidia (16–17.5 × 3.5–4.5 μ m, Yurchenko et al. 2017).

Figure 50 – Basidiomata of *Lyomyces sinensis* (holotype). Scale bars: a = 2 cm, b = 2 mm.

Figure 51 – Microscopic structures of *Lyomyces sinensis* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Clavate cystidia. d Tapering cystidia. e A section of hymenium. Scale bars: $a = 5 \mu m$, $b-e = 10 \mu m$.

Xylodon (Pers.) Gray

Index Fungorum number: IF18771; Facesoffungi number: FoF15415

Type species – Xylodon quercinus (Pers.) Gray

Notes – The genus Xylodon (Pers.) Gray was introduced by Gray (1821) and typifies by X. quercinus (Pers.) Gray. Due to a lack of rDNA sequences for many taxa, the molecular data were insufficient to clearly distinguish many genera; hence, a broader concept of Hyphodontia s.l. was employed by mycologists (Hjortstam & Ryvarden 2009, Yurchenko & Wu 2016, Riebesehl & Langer 2017, Riebeschl et al. 2019). Moreover, Hyphodontia s.l. was shown to be a polyphyletic genus, with Xylodon and Kneiffiella being the most species rich (Yurchenko & Wu 2016, Riebesehl & Langer 2017, Riebesehl et al. 2019). Yurchenko & Wu (2016) described two clades: the Xylodon-Lyomyces-Rogersella clade and the Xylodon-Schizopora-Palifer clade, and they proposed the inclusion of species from Xylodon, Schizopora Velen., Palifer Stalpers & P.K. Buchanan, Lyomyces P. Karst. and Rogersella Liberta & A.J. Nava within both clades. The research comprised the representative sequences and taxa of *Hyphodontia* s.l., including *Xylodon*, *Schizopora*, *Palifer*, Lyomyces, and Rogersella. The results demonstrated the difficulty of distinguishing the two genera *Xylodon* and *Schizopora* based on morphological and phylogenetic information; hence, the authors proposed that Xylodon and Schizopora should be united under Xylodon (Riebesehl & Langer 2017). It was confirmed that the two genera Lagarobasidium Jülich and Xylodon should be synonymous based on molecular data from the ITS+nLSU regions, and in which the three species were combined into Xylodon (Viner et al. 2018). In this study, based on the ITS+nLSU data (Fig. 8), Xylodon is grouped with Loymyces, Fasciodontia Yurchenko & Riebesehl, Hyphodontia and Kneiffielle, with five new species X. bamburesupinus, X. fissilis, X. hydnoides. X. olivaceobubalinus and X. pingbianensis spp. nov., included in Xylodon.

Xylodon bamburesupinus J.H. Dong & C.L. Zhao, sp. nov.

Index Fungorum number: IF850330; Facesoffungi number: FoF15416

Diagnosis – Differs from other *Xylodon* species by the farinaceous basidiomata with white to cream, smooth hymenial surface, monomitic hyphal system with clamped generative hyphae and ellipsoid to broadly ellipsoid basidiospores measuring $4-5.5 \times 3.5-5 \mu m$.

Etymology – *bamburesupinus* (Lat.): referring to resupinate to grow on bamboo of the type specimen.

Figure 52 – Basidiomata of *Xylodon bamburesupinus* (holotype). Scale bars: a = 1 cm, b = 2 mm.

Type – China, Yunnan Province, Qujing, Zhanyi District, Lingjiao Village, GPS coordinates 25°89' N, 103°67' E, altitude 1930 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 22 August 2022, CLZhao 23088 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, farinaceous, without odor or taste when fresh, up to 7.5 cm long, 3 cm wide, $100-150 \mu m$ thick. Hymenial surface smooth, pruinose, white

when fresh, turning white to cream upon drying. Sterile margin thin, white, thinning out, up to 0.5 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, interwoven, 2–4 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia of two types: (1) capitate, colorless, thin-walled, smooth, 34.5–53.5 × 3.5–6 μ m; (2) tapering, colorless, thin-walled, 30–43 × 3.5–5.5 μ m; cystidioles absent. Basidia clavate, with 4 sterigmata and a basal clamp connection, 14–16.5 × 3.5–4 μ m. Basidiospores ellipsoid to broadly ellipsoid, colorless, thin-walled, smooth, with drop, IKI–, CB–, 4–5.5(–6) × 3.5–5 μ m, L = 4.99 μ m, W = 4.16 μ m, Q = 1.15–1.25 (n = 60/2).

Material examined (paratype) – China, Yunnan Province, Qujing, Zhanyi District, Lingjiao Village, GPS coordinates 25°89' N, 103°67' E, altitude 1930 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 22 August 2022, CLZhao 23123 (SWFC).

Figure 53 – Microscopic structures of *Xylodon bamburesupinus* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Tapering cystidia. d Capitate cystidia. e A section of hymenium. Scale bars: $a = 5 \mu m$, $b-e = 10 \mu m$.

Notes – In this study, the new species *Xylodon bamburesupinus* is classified within *Xylodon* based on the ITS+nLSU data (Fig. 8), and is clustered with *X. filicinus* and *X. tropicus* C.L. Zhao. However, *X. filicinus* can be distinguished from *X. bamburesupinus* by its odontioid hymenial surface, and larger basidia (16–20 × 4.5–5.5 μ m, Riebesehl et al. 2019); *X. tropicus* can be delimited from *X. bamburesupinus* by its grandinioid hymenial surface, shorter basidia (7.1–13.5 × 2.3–4 μ m) and smaller basidiospores (2–4.8 × 1.6–4 μ m, Qu et al. 2022).

Xylodon bamburesupinus resembles X. attenuatus Spirin & Viner, X. dimiticus (Jia J. Chen & L.W. Zhou) Riebesehl & E. Langer, X. fissuratus C.L. Zhao, X. grandineus and X. vesiculosus Y Yurchenko, Nakasone & Riebesehl in its shared characteristic of ellipsoid basidiospores. However, X. attenuatus differs from X. bamburesupinus by its odontoid hymenial surface, and shorter capitate cystidia (14.2–27.2 × 3.3–4.5 μ m, Viner et al. 2018); X. dimiticus differentiates from X. bamburesupinus by its poroid hymenial surface, and narrower basidiospores (3.8–4.6 × 2.8–3.5)

 μ m, Chen et al. 2016); *X. fissuratus* can be distiniguished from *X. bamburesupinus* by its grandinioid hymenial surface, and shorter capitate cystidia (11.5–16.5 × 3–4.5 μ m, Guan et al. 2023); *X. grandineus* differs from X. *bamburesupinus* in its grandinioid hymenial surface, and smaller basidiospores (3–4.5 × 2–3 μ m, Luo et al. 2022); *X. vesiculosus* can be distinguished from X. *bamburesupinus* by its odontioid hymenial surface, and longer basidiospores (5.3–6.3 × 3–4 μ m, Riebesehl et al. 2019)

Xylodon fissilis J.H. Dong & C.L. Zhao, sp. nov.

Figs 54, 55

Index Fungorum number: IF850331; Facesoffungi number: FoF15417

Diagnosis – Differs from other *Xylodon* species by the coriaceous to furfuraceous basidiomata with buff, grandinoid hymenial surface, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $5.5-6 \times 4-4.5 \mu m$.

Figure 54 – Basidiomata of *Xylodon fissilius* (holotype). Scale bars: a = 1 cm, b = 0.5 mm.

Etymology - *fissilis* (Lat.): referring to the cracked hymenophore surface of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 7 June 2020, CLZhao 18740 (SWFC, holotype).

Figure 55 – Microscopic structures of *Xylodon fissilius* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Capitate cystidia. d A section of hymenium. Scale bars: $a = 5 \mu m$, $b-d = 10 \mu m$.

Description – Basidiomata annual, resupinate, adnate, without odor or taste, soft coriaceous when fresh, becoming furfuraceous upon drying, up to 12 cm long, 5 cm wide, 100–200 μ m thick. Hymenial surface grandinoid, cracked, slightly buff when fresh, turning to buff upon drying. Sterile margin narrow, slightly buff, abrupt, up to 1–2 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, interwoven, with a lot of crystals, 2–4.5 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia numerous, capitate, thin-walled, constricted at the neck, with a globose tip, $15-25 \times 5.5-8.5 \mu$ m; cystidioles absent. Basidia cylindrical, with a median constriction, with 4 sterigmata and a basal clamp connection, $14.5-22 \times 4.5-5.5 \mu$ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores ellipsoid, colorless, thin-walled, smooth, sometimes with a guttula, IKI–, CB–, $5.5-6(-6.3) \times (3.8-)4-4.5 \mu$ m, L = 5.85μ m, W = 4.15μ m, Q = 1.40-1.42 (n = 60/2).

Material examined (paratype) – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 7 June 2020, CLZhao 18750 (SWFC).

Notes – The new species *Xylodon fissilis* is placed within *Xylodon* based on the ITS+nLSU data (Fig. 8), and is identified as a sister taxon to *X. heterocystidiatus* (H.X. Xiong, Y.C. Dai &

Sheng H. Wu) Riebesehl, Yurch. & Langer. However, *X. heterocystidiatus* can be delimited from *X. fissilis* by its cream hymenial surface, fimbriate sterile margin, and smaller basidiospores $(4.4-5.3 \times 2.8-3.3 \mu m, Xiong et al. 2009)$

Xylodon fissilis shares similarities with *X. fissuratus* C.L. Zhao, *X. laceratus* C.L. Zhao, *X. lenis* Hjortstam & Ryvarden, *X. macrosporus* C.L. Zhao & K.Y. Luo and *X. punctus* K.Y. Luo & C.L. Zhao, all of which are characterized by a cracked hymenial surface and ellipsoid basidiospores. However, *X. fissuratus* can be distinguished from *X. fissilis* by its white hymenial surface, narrower basidia (10.5–16.5 × 2–4 µm) and smaller basidiospores (4–5 × 3–4 µm, Guan et al. 2023); *X. laceratus* differs from *X. fissilis* by its cream hymenial surface, narrower capitate cystidia (15.4–24.7 × 3.8–4.7 µm) and smaller basidiospores (3.9–5.3 × 2.6–4.1 µm, Qu et al. 2022); *X. lenis* Hjortstam & Ryvarden differentiates from *X. fissilis* in its odontioid to hydnoid hymenial surface, narrower basidia (16–21 × 3.5–4 µm) and smaller basidiospores (4.2–5 × 3–3.5 µm, Wu 1990); *X. macrosporus* differs from *X. fissilis* by its brittle basidiomata, wider basidia (11.5–36 × 5–11 µm) and larger basidiospores (8–10.5 × 7.5–9 µm, Luo et al. 2021a); *X. punctus* can be distinguished from *X. fissilis* by its white hymenial surface, and smaller basidiospores (2–4 × 1.5–2.5 µm, Luo et al. 2022).

Xylodon hydnoides J.H. Dong & C.L. Zhao, sp. nov.

Index Fungorum number: IF850332; Facesoffungi number: FoF15418

Diagnosis – Differs from other *Xylodon* species by the coriaceous basidiomata with cream to slightly brown, hydnoid hymenial surface, monomitic hyphal system with clamped generative hyphae and subglobose to globose basidiospores measuring $3.8-4.6 \times 3.2-4 \mu m$.

Etymology - hydnoides (Lat.): referring to the hydnoid hymenophore surface of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 2 August 2020, CLZhao 17991 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, without odor or taste, coriaceous when fresh, becoming hard coriaceous upon drying, up to 8 cm long, 3.5 cm wide, 100–200 μ m thick. Hymenial surface hydnoid, cream when fresh, turning to cream to slightly brown upon drying. Sterile margin narrow, cream, abrupt, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thick-walled, frequently branched, interwoven, 2–3.5 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Asterocystidia, clavate, thin-walled, with the apical part encrusted, 29.5–38.5 × 3.5–4.5 μ m; cystidioles absent. Basidia cylindrical, with 4 sterigmata and a basal clamp connection, 12.5–16.5 × 3–5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores subglobose to globose, colorless, thin-walled, smooth, sometimes with a guttula, IKI–, CB–, (3.6–)3.8–4.6(–5) × (2.9–)3.2–4(–4.3) μ m, L = 4.25 μ m, W = 3.64 μ m, Q = 1.13–1.17 (n = 120/4).

Material examined (paratypes) – China, Yunnan Province, Honghe City, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 2 August 2020, CLZhao 18105, CLZhao 18238, CLZhao 18239 (SWFC).

Notes – Based on the ITS+nLSU data, the new species *Xylodon hydnoides* is classified within *Xylodon* (Fig. 8) and forms a cluster with *X. daweishanensis* C.L. Zhao and *X. hyphodontinus* (Hjortstam & Ryvarden) Riebesehl, Yurchenko & G. Gruhn. However, *X. daweishanensis* can be distinguished from *X. hydnoides* by its buff hymenial surface, and shorter asterocystidia (11–26.5 × $2.5-4.5 \mu m$, Guan et al. 2023); *X. hyphodontinus* can be delineated from *X. hydnoides* by its light ochraceous hymenial surface, and larger basidiospores (5 × $4.5 \mu m$, Riebesehl et al. 2019).

Xylodon hydnoides resembles *X. flocculosus* C.L. Zhao, sharing similar asterocystidia. However, *X. flocculosus* differs from *X. hydnoides* byits grandinoid hymenial surface, and ellipsoid and thick-walled basidiospores $(4.2-5.7 \times 3.1-4.4 \mu m, Qu \& Zhao 2022)$.

Figs 56, 57

Figure 56 – Basidiomata of *Xylodon hydnoides* (holotype). Scale bars: a = 1 cm, b = 0.5 mm.

Xylodon hydnoides is similar to *X. lenis* Hjortstam & Ryvarden by the presence of hydnoid hymenial surface. However, *X. lenis* can be distinguished from *X. hydnoides* by its pinkish buff hymenial surface, longer basidia (16–21 × 3.5–4 μ m) and broadly ellipsoid basidiospores (4.2–5 × 3–3.5 μ m, Wu 1990).

Xylodon hydnoides shows similarities with X. crustosoglobosus (Hallenb. & Hjortstam) Hjortstam & Ryvarden, X. poroideoefibulatus (Sheng H. Wu) Hjortstam & Ryvarden and X. xinpingensis C.L. Zhao & X. Ma, characterized by the presence of subglobose to globose basidiospores. However, X. crustosoglobosus differs from X. hydnoides by its smooth hymenial surface, andlonger basidia $(17-25 \times 4.5-5 \ \mu m)$, Hallenberg & Hjortstam 1996); X. poroideoefibulatus differentiates from X. hydnoides by its poroid hymenial surface, wider basidia $(12-23 \times 5.5-6.5 \ \mu m)$ and larger basidiospores $(5-5.7 \times 4-4.5 \ \mu m)$, Wu 2001); X. xinpingensis differs from X. hydnoides in its reticulate hymenial surface, longer basidia $(18.5-33 \times 3-6.5 \ \mu m)$ and basidiospores $(4.5-6 \times 3.5-5 \ \mu m)$, Ma & Zhao 2021).

Figure 57 – Microscopic structures of *Xylodon hydnoides* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Asterocystidia. d A section of hymenium. Scale bars: a = $5 \mu m$, b–d = $10 \mu m$.

Xylodon olivaceobubalinus J.H. Dong & C.L. Zhao, sp. nov.

Figs 58, 59

Index Fungorum number: IF850333; Facesoffungi number: FoF15419

Diagnosis – Differs from other *Xylodon* species by the subceraceous basidiomata with buff to flavescent, grandinoid hymenial surface, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $6-8 \times 4-6.5 \mu m$.

Etymology – *olivaceobubalinus* (Lat.): referring to the olivaceous to buff hymenophore of the type specimen.

Type – China, Yunnan Province, Lincang, Yun County, Dumu Village, GPS coordinates 24°44' N, 100°12' E, altitude 1590 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 20 October 2022, CLZhao 25174 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, thin, very hard to separate from substrate, soft membranaceous when fresh, becoming subceraceous upon drying, up to 2.7 cm long, 1.6 cm wide, 50–100 μ m thick. Hymenial surface grandinoid, olivaceous when fresh, turning to buff to flavescent upon drying. Sterile margin indistinct, buff, thinning out, up to 0.5 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, interwoven 3–5.5 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Capitate cystidia, smooth, colorless, thin-walled, slightly constricted at the neck, with a globose head, 24.5–29 × 4–6 μ m; cystidioles absent. Basidia subclavate, with 4 sterigmata and a basal clamp connection, 26.5–29.5 × 6–7 μ m. Basidiospores ellipsoid, colorless, thin-walled, smooth,

with one oil drop inside, IKI–, CB–, $(5.8–)6–8(-9.2) \times 4–6.5 \ \mu\text{m}$, L = 6.8 μm , W = 5.76 μm , Q = 1.16–1.19 (n = 60/2).

Material examined (paratype) – China, Yunnan Province, Lincang City, Yun County, Dumu Village, GPS coordinates 24°44' N, 100°12' E, altitude 1590 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 20 October 2022, CLZhao 25164 (SWFC).

Notes – In this study, the new species *Xylodon olivaceobubalinus* is placed within *Xylodon* based on the ITS+nLSU data (Fig. 8), and it forms a cluster with *X. lenis* Hjortstam & Ryvarden and *X. nesporii* (Bres.) Hjortstam & Ryvarden. However, *X. lenis*can be distinguished from *X. olivaceobubalinus* by its odontioid to hydnoid hymenial surface, smaller basidia (16–21 × 3.5–4 μ m) and basidiospores (4.2–5 × 3–3.5 μ m, Wu 1990); *X. nesporii* be delineated from *X. olivaceobubalinus* by its odontioid hymenial surface, smaller basidia (15–25 × 4–5 μ m) and basidiospores (4.5–6 × 2–2.5 μ m, Bernicchia & Gorjón 2010).

Figure 58 – Basidiomata of *Xylodon olivaceobubalinus* (holotype). Scale bars: a = 1 cm, b = 2 mm.

Figure 59 – Microscopic structures of *Xylodon olivaceobubalinus* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Capitate cystidia. d A section of hymenium. Scale bars: $a-d = 10 \ \mu m$.

Xylodon olivaceobubalinus resembles *X. bambusinus* C.L. Zhao & X. Ma, *X. laceratus* C.L. Zhao, *X. macrosporus*, *X. tropicus*, and *X. ussuriensis* Viner by the presence of grandinioid hymenial surface. However, *X. bambusinus* differs from *X. olivaceobubalinus* by its white basidiomata, narrower basidia (15–28 × 3.5–4.5 µm) and smaller basidiospores (4–5.5 × 3–4 µm, Ma & Zhao 2021); *X. laceratus* differentiates from *X. olivaceobubalinus* by its cream hymenial surface, smaller basidia (11–17.5 × 3.2–5.5 µm) and basidiospores (3.9–5.3 × 2.6–4.1 µm, Qu et al. 2022); *X. macrosporus* can be distinguishesd from *X. olivaceobubalinus* in its brittle basidiomata, and larger basidiospores (8–10.5 × 7.5–9 µm, Luo et al. 2021a); *X. tropicus* differs from *X. olivaceobubalinus* by its cream to pale hymenial surface, smaller basidia (7.1–13.5 × 2.3–4 µm) and basidiospores (2–4.8 × 1.6–4 µm, Qu et al. 2022); *X. ussuriensis* differentites from *X. olivaceobubalinus* by its white hymenial surface, smaller basidia (7.1–13.5 × 2.3–4 µm) and basidiospores (2–4.8 × 1.6–4 µm, Qu et al. 2022); *X. ussuriensis* differentites from *X. olivaceobubalinus* by its white hymenial surface, smaller basidia (14.7–22.8 × 3.4–4.9 µm) and shorter basidiospores (5.1–6 × 3.8–4.6 µm, Viner et al. 2018).

Xylodon pingbianensis J.H. Dong & C.L. Zhao, sp. nov.

Figs 60, 61

Index Fungorum number: IF850334; Facesoffungi number: FoF15420

Diagnosis – Differs from other *Xylodon* species by the membranaceous basidiomata with pale-orange, grandinoid hymenial surface, monomitic hyphal system with clamped generative hyphae and subglobose to globose basidiospores measuring $7-8 \times 6.5-7.6 \,\mu\text{m}$.

Etymology – *pingbianensis* (Lat.): referring to the locality (Pingbian County) of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 9 June 2020, CLZhao 19029 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, without odor or taste, soft membranaceous when fresh, becoming hard membranaceous upon drying, up to 5 cm long, 2 cm wide, 50–150 μ m thick. Hymenial surface grandinoid, slightly cinnamon-buff when fresh, turning to pale-orange upon drying. Sterile margin narrow, slightly white, slightly fimbriate, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin to slightly thick-walled, frequently branched, interwoven, 4–7 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia numerous, tubular, slightly thick-walled, 100–165 × 10–14 μ m; cystidioles absent. Basidia clavate, constricted, with 4 sterigmata and a basal clamp connection, 25–34 × 7.5–10.5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores subglobose to globose, colorless, thick-walled, smooth, IKI–, CB+, 7–8(–8.5) × 6.5–7.6(–8) μ m, L = 7.69 μ m, W = 7.16 μ m, Q = 1.07 (n = 30/1).

Figure 60 – Basidiomata of *Xylodon pingbianensis* (holotype). Scale bars: a = 1 cm, b = 0.5 mm.

Figure 61 – Microscopic structures of *Xylodon pingbianensis* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Tubular cystidia. d A section of hymenium. Scale bars: $a-d = 10 \ \mu m$.

Notes – Based on the ITS+nLSU data (Fig. 8), the new species *Xylodon pingbianensis* is grouped into *Xylodon*, and is clustered with *X. nothofagi* (G. Cunn.) Hjortstam & Ryvarden, *X. puerensis* C.L. Zhao and *X. taiwanianus* (Sheng H. Wu) Hjortstam & Ryvarden. However, *X. nothofagi* can be delimited from *X. pingbianensis* by its poroid hymenial surface, smaller basidia (12–14 × 3–4 µm) and basidiospores (5–6.5 × 1.5–2 µm, Hjortstam & Ryvarden 2009); *X. puerensis* can be distinguished from *X. pingbianensis* by its poroid hymenial surface, smaller basidia (14.5–20 × 5–7 µm) and basidiospores (6–7 × 4.5–5.5 µm, Guan et al. 2023); *X. taiwanianus* can be delimited from *X. pingbianensis* by its poroid hymenial surface, smaller basidia (14–20 × 4–5 µm) and basidiospores (4.5–5.5 × 2.6–3 µm, Wu 2001).

Xylodon pingbianensis shares similaraties with X. xinpingensis C.L. Zhao & X. Ma, X. crustosoglobosus (Hallenb. & Hjortstam) Hjortstam & Ryvarden, X. poroideoefibulatus (Sheng H. Wu) Hjortstam & Ryvarden, X. rudis (Hjortstam & Ryvarden) Hjortstam & Ryvarden, X. sinensis C.L. Zhao & K.Y. Luo and X. subglobosus Samita, Sanyal & Dhingra ex L.W. Zhou & T.W. May, all characterized by having subglobose to globose basidiospores. However, X. crustosoglobosus differs from X. pingbianensis by its smooth and greyish white to pale yellowish hymenial surface, smaller basidia $(17-25 \times 4.5-5 \ \mu m)$ and basidiospores $(4.5-5 \times 3.8-4 \ \mu m)$, Hallenberg & Hjortstam 1996); X. poroideoefibulatus differentiates from X. pingbianensis by
its poroid hymenial surface, smaller basidia $(12-23 \times 5.5-6.5 \ \mu\text{m})$ and basidiospores $(5-5.7 \times 4-4.5 \ \mu\text{m})$, Wu 2001); *X. rudis* can be distinguished from *X. pingbianensis* in its odontoid and pale ochraceous hymenial surface, narrower basidia $(25-30 \times 4.5-5 \ \mu\text{m})$ and smaller basidiospores $(5 \times 4 \ \mu\text{m})$, Hjortstam & Ryvarden 1997); *X. sinensis* differs from *X. pingbianensis* by its cream to buff hymenial surface, smaller basidia $(9.5-17.5 \times 2.5-4.5 \ \mu\text{m})$ and basidiospores $(3-5 \times 2.5-4 \ \mu\text{m})$, Luo et al. 2021a); *X. subglobosus* differentiates from *X. pingbianensis* by its odontoid and pale orange hymenial surface, smaller basidia $(20-26 \times 4.7-5.3 \ \mu\text{m})$ and basidiospores $(4.2-5.2 \times 3-5 \ \mu\text{m})$, Wang et al. 2021b)

Skvortzoviaceae L.W. Zhou & Xue W. Wang

Index Fungorum number: IF900259; Facesoffungi number: FoF14030 Type genus – *Skvortzovia* Bononi & Hjortstam

Skvortzovia Bononi & Hjortstam

Index Fungorum number: IF14446; Facesoffungi number: FoF14030 Type species – *Skvortzovia furfurella* (Bres.) Bononi & Hjortstam

Notes – The genus *Skvortzovia* Bononi & Hjortstam was established by Hjortstam & Bononi (1987) and typified by *S. furfurella* (Bres.) Hjortstam & Bononi. A molecular phylogeny, inferred from 5.8S and nLSU rDNA sequences for the hymenochaetoid clade showed that *Skvortzovia* nested into the *Rickenella* clade and then grouped with *Resinicium* Parmasto (Larsson et al. 2006). Morphological and molecular studies on *Resinicium* revealed that three species of *Skvortzovia* closely formed a group, subsequently clustering with a clade comprising *Cyphellostereum* D.A. Reid, *Resinicium* and *Rickenella* Raithelh. (Nakasone 2007). When revising the taxonomy of *Resinicium*, Nakasone (2007) excluded *R. furfurellum* from *Resinicium* sensu stricto, treating this species as a member of *Resinicium* sensu lato. Recently, four species *Resinicium furfuraceum* (Bres.) Parmasto, *R. meridionale* (Burds. & Nakasone) Nakasone, *R. pinicola* (J. Erikss.) J. Erikss. & Hjortstam and *Phlebia georgica* Parmasto were formally transferred to *Skvortzovia* (Gruhn & Hallenberg 2018). The research, supported by morphological studies and the phylogenetic analyses, revealed the three new taxa of *Skvortzovia* the new taxa within *Skvortzovia* (Dong et al. 2021, Yu et al. 2021b). In this, based on the ITS, nLSU, mtSSU and RPB2 data (Fig. 9), a new species *S. incana* is introduced.

Skvortzovia incana J.H. Dong & C.L. Zhao, sp. nov.

Fig 62, 63

Index Fungorum number: IF850335; Facesoffungi number: FoF15421

Diagnosis – Differs from other *Skvortzovia* species by the membranaceous basidiomata with incanus, odontioid hymenial surface, monomitic hyphal system with clamped generative hyphae and allantoid basidiospores measuring $5.2-5.7 \times 1.1-1.3 \mu m$.

Etymology - incana (Lat.): referring to the incanus hymenial surface of the type specimen.

Type – China, Yunnan Province, Wenshan, Pinba Town, Wenshan National Nature Reserve, GPS coordinates 23°22' N, 104°43' E, altitude 1500 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 25 July 2019, CLZhao 16338 (SWFC, holotype).

Description – Basidiomata annual, resupinate, very thin, adnate, soft membranaceous, without odour or taste when fresh, becoming membranaceous upon drying, up to 12 cm long, 3.5 cm wide, $50-100 \mu m$ thick. Hymenial surface odontioid, white when fresh, turning incanus upon drying. Sterile margin white to incanus, thinning out, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin to thick-walled, frequently branched, interwoven, 2.5–3.5 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia numerous, capitate, colorless, thin-walled, smooth, 28–32 × 2–2.5 μ m, projecting above the hymenium; cystidioles absent. Basidia subclavate, thin-walled, with 4 long sterigmata and a basal clamp connection, 11–15 × 2.5–4 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores allantoid, colorless, thin-walled, smooth, CB–, IKI–, (5–)5.2–5.7(–6) × 1.1–1.3 μ m, L = 5.45 μ m, W = 1.15 μ m, Q = 4.70–4.74 (n = 60/2).

Figure 62 – Basidiomata of *Skvortzovia incana* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Material examined (paratype) – China, Yunnan Province, Wenshan, Pinba Town, Wenshan National Nature Reserve, GPS coordinates GPS coordinates 23°22' N, 104°43' E, altitude 1500 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 26 July 2019, CLZhao 16474 (SWFC).

Notes – Based on the ITS, nLSU, mtSSU and RPB2 data (Fig. 9), the new species *Skvortzovia incana* is grouped into *Skvortzovia*, and is revealed as a sister to *S. furfurella* (Bres.) Bononi & Hjortstam. However, *S. furfurella* can be delimited from *S. incana* by its darkening and pale ochraceous hymenial surface, and smaller basidiospores $(4-5 \times 1 \ \mu m, Hjortstam \& Bononi 1987)$.

Skvortzovia incana resembles *S. georgica* (Parmasto) G. Gruhn & Hallenb. in sharing the allantoid basidiospores. However, *S. georgica* differs from *S. incana* due to its smooth hymenial surface, and wider basidiospores $(4.5-5 \times 2-2.5 \ \mu m, Bernicchia \& Gorjón 2010)$.

Figure 63 – Microscopic structures of *Skvortzovia incana* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Capitate cystidia. d A section of hymenium. Scale bars: $a = 5 \mu m$, $b-d = 10 \mu m$.

Tubulicrinaceae Jülich

Index Fungorum number: IF80048; Facesoffungi number: FoF15422 Type genus – *Tubulicrinis* Donk

Tubulicrinis Donk

Index Fungorum number: IF18693; Facesoffungi number: FoF15423 Type species – *Tubulicrinis glebulosus* (Fr.) Donk

Notes – The genus *Tubulicrinis* Donk, typified by *T. glebulosus* (Fr.) Donk (Donk 1956), was a member of the corticioid fungi. *Tubulicrinis* has undergone molecular studies, examining its genetic makeup and molecular features to gain insights into its taxonomy and functional genomics (Larsson et al. 2006, Dai 2011, Crous et al. 2016, He et al. 2020). The research on the molecular phylogeny of the hymenochaetoid clade revealed two *Tubulicrinis* species, *T. gracillimus* (Ellis & Everh. ex D.P. Rogers& H.S. Jacks.) G. Cunn. and *T. subulatus* (Bourdot & Galzin) Donk, formed a monophyletic lineage and were subsequently grouped with the *Coltricia* and Hymenochaetaceae clades (Larsson et al. 2006). A revised checklist of corticioid and hydnoid fungi in China revealed six recorded *Tubulicrinis* species (Dai 2011). Six new *Tubulicrinis* species were nested into the Tubulicrinaceae clade, belonging to Hymenochaetales (Crous et al. 2016). He et al. (2020), based on morphological and molecular analysis of *Tubulicrinis*, described two new species; *T. xantha* C.L. Zhao and *T. yunnanensis* C.L. Zhao. In this study, we describe one additional species of *Tubulicrinis* from China, based on morphological characteristics and phylogenetic analyses inferred from ITS, nLSU and mtSSU sequences (Fig. 10).

Tubulicrinis pini J.H. Dong & C.L. Zhao, sp. nov.

Index Fungorum number: IF850336; Facesoffungi number: FoF15424

Diagnosis – Differs from other *Tubulicrinis* species by the coriaceous basidiomata with slightly buff, smooth hymenial surface, monomitic hyphal system with clamped generative hyphae and cylindrical to allantoid basidiospores measuring $5-6 \times 1.8-2.3 \,\mu\text{m}$.

Figs 64, 65

Etymology – *pini* (Lat.): referring to growing on the pines (*Pinus yunnanensis*) of the type specimen.

Type – China, Yunnan Province, Chuxiong, Zixishan National Forestry Park, GPS coordinates 25°01' N, 101°24' E, altitude 2500 m asl., on the fallen branch of *Pinus yunnanensis*, leg. C.L. Zhao, 30 June 2018, CLZhao 6881 (SWFC, holotype).

Description – Basidiomata annual, resupinate, thin, adnate, coriaceous, without odor or taste when fresh, becoming hard coriaceous upon drying, up to 10–15 cm long, 5 cm wide, 100–200 μ m thick. Hymenial surface smooth, white when fresh, turn to slightly buff upon drying. Sterile margin white to buff, abrupt, up to 1 mm wide.

Figure 64 – Basidiomata of *Tubulicrinis pini* (holotype). Scale bars: a = 1 cm, b = 0.5 mm.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, branched, $2-3.5 \mu m$ in diameter, subhymenial hyphae immersed in a resinous matter; IKI–, CB–,

tissues unchanged in KOH. Lyocystidia numerous, projecting, cylindrical to slightly sinuous, birooted, 55–75 × 8.5–10 µm, projecting above the hymenium; cystidioles absent. Basidia clavate, with 4 sterigmata and a basal clamp connection, $11-14.5 \times 4.5-5.5$ µm; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores cylindrical to allantoid, colorless, thinwalled, smooth, IKI–, CB–, (4.8–)5–6(–6.4) × 1.8(–2)–2.3 µm, L = 5.52 µm, W = 2.20 µm, Q = 2.43–2.51 (n = 60/2).

Material examined (paratype) – China, Yunnan Province, Puer, Jingdong County, Ailaoshan National Nature Reserve, GPS coordinates 24°36' N, 10°32' E, altitude 2500 m asl., on the fallen branch of *Pinus*, leg. C.L. Zhao, 3 October 2017, CLZhao 3679 (SWFC).

Notes – Based on the ITS, nLSU and mtSSU data (Fig. 10), the new species *Tubulicrinis pini* is grouped within *Tubulicrinis*, forming a monophyletic lineage, and is closely associated with *T. glebulosus* (Fr.) Donk and *T. yunnanensis* C.L. Zhao. However, *T. glebulosus* can be delimited from *T. pini* by its whitish to pale ochraceous hymenial surface, longer basidia $(20-25 \times 4-5 \mu m)$ and basidiospores $(6-9 \times 1.5-2.25 \mu m)$, Bernicchia & Gorjón 2010); *T. yunnanensis* can be distinguished from *T. pini* by its primrose to olivaceous buff hymenial surface, and narrower basidia $(8.5-20.5 \times 2.5-4.5 \mu m)$, He et al. 2020).

Figure 65 – Microscopic structures of *Tubulicrinis pini* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Lyocystidia. d A section of hymenium. Scale bars: $a = 5 \mu m$, $b-d = 10 \mu m$.

Polyporales Gäum.

Hypochniciaceae J.H. Dong & C.L. Zhao, fam. nov.

Index Fungorum number: IF848334; Facesoffungi number: FoF15425 Etymology – *Hypochniciaceae* (Lat.): referring to the type genus *Hypochnicium*.

Type genus – *Hypochnicium* J. Erikss.

Description – Basidiomata resupinate. Hymenial surface smooth, hypochnoid, tuberculate to odontioid. Hyphal system monomitic; generative hyphae with clamp connections. Cystidia present. Basidia clavate to suburniform, usually constricted, with 4 sterigmata and a basal clamp connection. Basidiospores ellipsoid, subglobose to globose, distinctly thick-walled, smooth, IKI–, cyanophilous.

Notes – Justo et al. (2017) and He et al. (2019) indicated that *Hypochnicium* could not be assigned to any recognized family of Polyporales, and its classification at the family level was

treated as incertae sedis. Maekawa et al. (2023), based on the morphological and phylogenetic studies of *Hypochnicium* sensu lato, supported a monophyletic lineage of *Hypochnicium* s. str. In this study, the new family Hypochniciaceae formed a single lineage (100% BS, 100% BP and 1.00 BPP) and then grouped with Hyphodermataceae Jülich and Steccherinaceae Parmasto, using combined ITS, nLSU, mtSSU, RPB1 and TEF1 sequence data (Fig. 13). Hence, based on morphology and molecular evidence, Hypochniciaceae is established for *Hypochnicium*, and three genera are accepted in Hypochniciaceae viz., *Bulbillomyces* Jülich, *Gyrophanopsis* Jülich and *Hypochnicium*.

Hypochnicium J. Erikss.

Index Fungorum number: IF17832; Facesoffungi number: FoF15426 Type species – *Hypochnicium bombycinum* (Sommerf.) J. Erikss.

Notes - The genus Hypochnicium J. Erikss. was introduced by Eriksson (1958) and typified by H. bombycinum (Sommerf.) J. Erikss. Hypochnicium has been continually studied based on both morphology and phylogeny (Nilsson & Hallenberg 2003, Paulus et al. 2007, Telleria et al. 2010a, Justo et al. 2017, Maekawa et al. 2023). Nilsson & Hallenberg (2003) clarified the phylogeny of the H. punctulatum complex through parsimony analysis based on ITS sequence, in which the new combination H. cremicolor Bres. was synonymized with H. punctulatum (Cooke) J. Erikss. and H. caucasicum Parmasto was demonstrated to be a synonym to H. wakefieldiae (Bres.) J. Erikss. Phylogenetic analyses based on the ITS region of rDNA suggested that the species of Hypochnicium formed a monophyletic group, and the synonymy of Gyrophanopsis with Hypochnicium was validated and Nodotia Hjortstam was re-evaluated as a synonym of Hypochnicium (Paulus et al. 2007). Hypochnicium was reevaluated based on morphological and molecular data, revealing six clades, with one containing taxa with smooth spores, and three with ornamented spores, and proposing two new species H. guineense Tellería, M. Dueñas, Melo & M.P. Martín, H. michelii Tellería, M. Dueñas, Melo & M.P. Martín (Telleria et al. 2010a). Justo et al. (2017) studied the phylogenetic relationships within Hypochnicium and proposed several species grouped in Podoscyphaceae, although they did not appear closely related to the type species H. bombycinum. The study of Hypochnicium sensu lato included 14 species of Hypochnicium in Neohypochnicium N. Maek. & R. Sugaw. supporting a monophyletic lineage of Hypochnicium s. str. (Maekawa et al. 2023).

Incrustoporiaceae Jülich

Index Fungorum number: IF81733; Facesoffungi number: FoF15427 Type genus – *Incrustoporia* Domański

Skeletocutis Kotl. & Pouzar

Index Fungorum number: IF18554; Facesoffungi number: FoF15428

Type species - Skeletocutis amorpha (Fr.) Kotl. & Pouzar

Notes – The genus *Skeletocutis* Kotl. & Pouzar was established by Kotlába & Pouzar (1958) and typified by *S. amorpha* (Fr.) Kotl. & Pouzar. Based on multi-gene analyses, Binder et al. (2013) demonstrated that the type species of *Skeletocutis* (*S. amorpha*) belongs to the tyromyces clade, and appearing to be grouped with *Tyromyces chioneus* (Fr.) P. Karst., and *Piloporia sajanensis* (Parmasto) Niemelä by using ribosomal DNA sequences. Bian et al. (2016) described a new poroid species in *Skeletocutis* based on its morphological characters and rDNA sequences, which also belonged to the tyromyces clade, and was related to *S. amorpha* and *S. portcrosensis* A. David. Extensive taxonomic and phylogenetic studies have been conducted on polypores in China, with limited emphasis on *Skeletocutis* is introduced from China based on morphological characteristics and phylogenetic analyses inferred from ITS sequences.

Skeletocutis rhizomorpha J.H. Dong & C.L. Zhao, sp. nov.

Figs 66, 67

Index Fungorum number: IF850337; Facesoffungi number: FoF15429

Diagnosis – Differs from other *Skeletocutis* species by the soft corky basidiomata with cream to buff, poroid hymenial surface, rhizomporphic margin, dimitic hyphal system with clamped generative hyphae and allantoid basidiospores measuring $2-2.7 \times 1-1.5 \,\mu\text{m}$.

Etymology – *rhizomorpha* (Lat.): referring to growing the rhizomorphic hymenophore of the type specimen.

Type – China, Yunnan Province, Puer, Jingdong County, Wuliangshan National Nature Reserve, GPS coordinates 23°57' N, 100°22' E, altitude 3380 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 2 October 2017, CLZhao 3552 (SWFC, holotype).

Description – Basidiomata annual, resupinate, soft corky, without odor or taste when fresh, becoming coriaceous upon drying, up to 5 cm long, 3cm wide, 1 mm thick. Poroid surface cream when fresh, turning to cream to buff upon drying, pores angular, 4–8 per mm, up to 1.5 mm deep, 0.2 mm in diameter; dissepiments thin; tubes concolorous with poroid surface. Context cream, flocculence, up to 1 mm thick. Margin distinct when juvenile, white to cream, rhizomporphic, up to 2 mm wide.

Figure 66 – Basidiomata of *Skeletocutis rhizomorpha* (holotype). Scale bars: a-b = 2 cm, c-e = 1 mm, f = 0.5 mm.

Hyphal system dimitic, generative hyphae with clamp connections; skeletal hyphae dominant, IKI–, CB–, tissues unchanged in KOH. Subiculum: generative hyphae, colorless, thin-walled, occasionally branched and bearing crystals, $2.5-3.5 \mu m$ in diameter; skeletal hyphae dominant, thick-walled, flexuous, unbranched, interwoven, $3-5 \mu m$ in diameter. Tubes: generative hyphae, thin-walled, usually covered by crystals, sharp-pointed encrustations, especially at dissepiment

edge, 2–3 µm in diameter; skeletal hyphae dominant, thick-walled with a narrow lumen to subsolid, unbranched, subparallel along the tubes, 3–4.5 µm in diameter. Dissepiment edge with abundant smooth skeletal hyphae, fairly straight, encrusted generative hyphae. Cystidia absent, cystidioles abundant, bottle-shaped, with a conical apex, almost as size as basidia, 5.5–9 × 2.5–4 µm. Basidia barrelled, with 4 sterigmata and a basal clamp connection, $5.5–9 \times 3–4$ µm; basidioles infrequent, in shape similar to basidia, but slightly smaller. Basidiospores allantoid, colorless, thin-walled, smooth, usually bearing one to two small guttulae, CB–, IKI–, $(1.8–)2–2.7(-3) \times 1–1.5$ µm, L = 2.34 µm, W = 1.29 µm, Q = 1.71–1.96 (n = 120/4).

Material examined (paratypes) – China, Yunnan Province, Puer, Jingdong County, Wuliangshan National Nature Reserve, GPS coordinates $23^{\circ}57'$ N, $100^{\circ}22'$ E, altitude 3380 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 2 October 2017, CLZhao 3516; on the trunk of angiosperm, leg. C.L. Zhao, 2 October 2017, CLZhao 3455, CLZhao 3583, CLZhao 3667 (SWFC). Notes – In this study, the new species *Skeletocutis rhizomorpha* is grouped into *Skeletocutis*, based on the ITS data (Fig. 11), and is found to be sister to the species *S. bambusicola* L.W. Zhou & W.M. Qin. However, *S. bambusicola* can be delimited from *S. rhizomorpha* by its both larger basidia (12– $20 \times 4-5 \mu$ m) and basidiospores (2.7–3.1 × 1.5–1.9 µm, Zhou & Qin 2012).

Skeletocutis rhizomorpha resembles *S. subchrysella* B.K. Cui & Shun Liu by sharing allantoid basidiospores. However, *S. subchrysella* differs from *S. rhizomorpha* by its both longer basidia ($10.3-15.6 \times 3.2-4.5 \mu m$) and basidiospores ($2.7-3.2 \times 0.7-1 \mu m$, Jayawardena et al. 2023).

Figure 67 – Microscopic structures of *Skeletocutis rhizomorpha* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Cystidioles. d A section of hymenium. e Hyphal from context. Scale bars: $a-c = 5 \mu m$, $d-e = 10 \mu m$.

Irpicaceae Spirin & Zmitr.

Index Fungorum number: IF82147; Facesoffungi number: FoF15430 Type genus – *Irpex* Fr.

Efibula Sheng H. Wu

Index Fungorum number: IF25473; Facesoffungi number: FoF15431 Type species – *Efibula tropica* Sheng H. Wu

Notes – The genus *Efibula* Sheng H. Wu was introduced by Wu (1990) and typified by *E. tropica* Sheng H. Wu. Revisiting the taxonomy of *Phanerochaete* P. Karst. using a four gene dataset, revealed that four *Efibula* species clustered together and then grouped with *Byssomerulius* corium (Pers.) Parmasto (Floudas & Hibbett 2015). A phylogenetic study revising the family-level classification of the Polyporales showed that *E. clarkia* Floudas & Hibbett and *E. gracilis* Floudas & Hibbett grouped, with *Efibula* species nested within Irpicaceae (Justo et al. 2017). Chen et al. (2021) demonstrated through phylogenetic analyses of multiple genes that the *Efibula* was paraphyletic in the phylogenetic tree, however, there was insufficient morphological evidence to support the recognition of separate genera. In this study, a new *Efibula* species is introduced from China, characterized by morphological traits and analyzed phylogenetically using ITS, nLSU and TEF1 sequences.

Efibula daweishanensis J.H. Dong & C.L. Zhao, sp. nov.

Figs 68, 69

Index Fungorum number: IF850338; Facesoffungi number: FoF15432

Diagnosis – Differs from other *Efibula* species by the coriaceous basidiomata with cream to slightly buff, grandinoid hymenial surface, monomitic hyphal system with septate generative hyphae and elliposoid basidiospores measuring $6-7.5 \times 3.5-4.8 \,\mu\text{m}$.

Etymology - daweishanensis (Lat.): referring to the locality (Daweishan) of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 9 June 2020, CLZhao 18946 (SWFC).

Description – Basidiomata annual, resupinate, adnate, without odor or taste, soft coriaceous when fresh, becoming coriaceous upon drying, up to 5 cm long, 3 cm wide, 50–100 μ m thick. Hymenial surface grandinoid, white to cream when fresh, turning to cream to slightly buff upon drying. Sterile margin narrow, slightly cream, thinning out, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with simple septa, colorless, thin-walled, frequently interwoven, subhymenial hyphae more or less covered by the crystals, 2.5–4 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia and cystidioles absent. Basidia clavate, slightly sinuous, with 4 sterigmata and a basal simple septum, 14–19 × 5–6.5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores elliposoid, colorless, thin-walled, smooth, IKI–, CB–, (5.8–)6–7.5 × 3.5–4.8(–5) μ m, L = 6.67 μ m, W = 4.12 μ m, Q = 1.55–1.66 (n = 90/3).

Material examined (paratypes) – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 9 June 2020, CLZhao 19002; Lincang, Yun County, Dumu Village, GPS coordinates 24°44' N, 100°12' E, altitude 1590 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 20 October 2022, CLZhao 25072 (SWFC).

Notes – Based on the ITS, nLSU and TEF1 data (Fig. 12), the new species *Efibula* daweishanensis is classified within *Efibula*, and clusters with *E. grandinosa* Yue Li & S.H. H and *E. shenghuae* Yue Li & S.H. He. However, *E. grandinosa* can be delimited from *E. daweishanensis* by its pale orange to grayish orange hymenial surface, and longer basidia ($36-43 \times 5-7 \mu m$, Li et al. 2022b); *E. shenghuae* can be distinguished from *E. daweishanensis* by its orange white to pale orange hymenial surface, longer basidia ($23-38 \times 4.5-7 \mu m$) and narrower basidiospores ($6-6.5 \times 3-3.5 \mu m$, Li et al. 2022b).

Figure 68 – Basidiomata of *Efibula daweishanensis* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Neohypochniciaceae J.H. Dong & C.L. Zhao, fam. nov.

Index Fungorum number: IF850339; Facesoffungi number: FoF15433

Etymology – Neohypochniciaceae (Lat.): referring to the type genus Neohypochnicium.

Type genus – Neohypochnicium N. Maek. & R. Sugaw.

Description – Basidiomata resupinate. Hymenial surface smooth to odontoid. Hyphal system monomitic; generative hyphae with clamp connections. Cystidia present. Basidia subclavate to suburniform, with 4 sterigmata and a basal clamp connection. Basidiospores ellipsoid, subglobose to globose, smooth, finely verrucose or finely echinulate, thick-walled, IKI–, cyanophilous.

Notes – *Neohypochnicium* could not be assigned to any recognized family of Polyporales, and its classification at the family level was treated as incertae sedis (Maekawa et al. 2023). In this study, based on combined ITS, nLSU, mtSSU, RPB1 and TEF1 sequence data, the new family Neohypochniciaceae formed a single lineage and then placed within Podoscyphaceae D.A. Reid

(Fig. 13). Hence, based on morphological characters and molecular evidence, Neohypochniciaceae fam. nov. is proposed for *Neohypochnicium*. Up to date, only *Neohypochnicium* taxa are accepted within Neohypochniciaceae.

Figure 69 – Microscopic structures of *Efibula daweishanensis* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c A section of hymenium. Scale bars: $a-d = 10 \mu m$.

Neohypochnicium N. Maek. & R. Sugaw.

Index Fungorum number: IF842573; Facesoffungi number: FoF15434

Type species – Neohypochnicium perlongicystidiosum N. Maek., Kogi & Norikura

Notes – The genus *Neohypochnicium* N. Maek. & R. Sugaw. was established by Maekawa et al. (2023) and typified by *N. perlongicystidiosum* N. Maek., Kogi & Norikura. Maekawa et al. (2023), based on the morphological and phylogenetic studies of *Hypochnicium* sensu lato, supported a monophyletic lineage of *Hypochnicium* s. str., in which 14 species of *Hypochnicium* were included in "*Neohypochnicium*" clade, namely, *Hypochnicium albostramineum*, *H. aotearoae* B.C. Paulus, H. Nilsson & Hallenb., *H. cremicolor* (Bres.) H. Nilsson & Hallenb., *H. cystidiatum* Boidin & Gilles, *H. geogenium*, *H. guineense* Tellería, M. Dueñas, Melo & M.P. Martín, *H. huinayense* Tellería, M. Dueñas & M.P. Martín, *H. michelii*, *H. microsporum* G. Gruhn, Schimann & M. Roy, *H. patagonicum* Gorjón & Hallenb., *H. pini*, *H. punctulatum*, *H. subrigescens*, and *H. wakefieldiae* (Maekawa et al. 2023). In this study, six new species, *N. daweishanense*, *N. farinaceum*, *N. murinum*, *N. velutinum*, *N. yunnanense* and *N. zixishanense* are described from China based on morphology and phylogeny.

```
Neohypochnicium daweishanense J.H. Dong & C.L. Zhao, sp. nov.Figs 70, 71Index Fungorum number: IF850340; Facesoffungi number: FoF15435Figs 70, 71
```

Diagnosis – Differs from other *Neohypochnicium* species by the membranaceous basidiomata with slightly yellowish to yellowish brown, smooth hymenial surface, monomitic hyphal system with clamped generative hyphae and globose basidiospores measuring $7.8-9.5 \times 7.7-9 \,\mu\text{m}$.

Etymology - daweishanense (Lat.): referring to the locality (Daweishan) of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 9 June 2020, CLZhao 17726 (SWFC).

Figure 70 – Basidiomata of *Newhypochnicium daweishanense* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Description – Basidiomata annual, resupinate, adnate, without odor or taste, soft membranaceous when fresh, becoming hard membranaceous upon drying, up to 10 cm long, 5 cm

wide, 50–100 μ m thick. Hymenial surface smooth, hypochnoid, cream to slightly yellowish when fresh, turning to slightly yellowish to yellowish brown upon drying. Sterile margin narrow, slightly cream, abrupt, up to 1 mm wide.

Figure 71 – Microscopic structures of *Newhypochnicium daweishanense* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c A section of hymenium. d Tubular cystidia. Scale bars: $a-d = 10 \mu m$.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin to thick-walled, branched, interwoven, 4–7 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia numerous, tubular, slightly thick-walled, with one or several adventitious septa, with tapered apex, 80–180 × 6–10 μ m; cystidioles absent. Basidia subclavate, with 4 sterigmata and a

basal clamp connection, $30-35 \times 8-12 \mu m$; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores globose, colorless, thick-walled, smooth, IKI–, CB+, (7.5–)7.8–9.5 \times (7.5–)7.7–9 μm , L =8.57 μm , W = 8.46 μm , Q = 1.01 (n = 30/1).

Notes – Based on the ITS, nLSU, mtSSU, RPB1 and TEF1 data (Fig. 13), the new species *Neohypochnicium daweishanense* is grouped within *Neohypochnicium*, and clustered with *N. geogenium* (Bres.) N. Maek. and *N. yunnanense*. However, *N. geogenium* can be delimited from *N. daweishanense* by its tuberculate hymenial surface, smaller basidia (20–30 × 5–6 μ m) and smaller basidiospores (6–7.5 × 4–4.5 μ m, Eriksson & Ryvarden 1976); *N. yunnanense* can be differentiated from *N. daweishanense* by its cream hymenial surface and corticous basidiomata.

Neohypochnicium daweishanense resembles *N. aotearoae* (B.C. Paulus, H. Nilsson & Hallenb.) N. Maek. and *N. asiaticum* N. Maek. & Kogi in having the smooth hymenial surface. However, *N. aotearoae* differs from *N. daweishanense* by its white to cream hymenial surface, verrucose and narrower basidiospores (5.6–8.7 × 4.8–7.3 μ m, Paulus et al. 2007); *N. asiaticum* differentiates from *N. daweishanense* by its white hymenial surface, verrucose and narrower basidiospores (7–8 × 5.5–6.5 μ m, Maekawa et al. 2023).

Neohypochnicium daweishanense is similar to N. michelii (Tellería, M. Dueñas, Melo & M.P. Martín) N. Maek., N. microsporum (G. Gruhn, Schimann & M. Roy) N. Maek. and N. subrigescens (Boidin) N. Maek. in having the smooth basidiospores. The species N. michelii differs from N. daweishanense by its porulose hymenial surface, smaller basidia (20–30 × 6–7.5 μ m) and narrower basidiospores (9–11 × 7–7.5 μ m, Telleria et al. 2010a); N. microsporum differentiates from N. daweishanense by its smaller basidiospores (3.9–5 × 3.8–5 μ m, Gruhn et al. 2017); N. subrigescens differs from N. daweishanense by its both smaller basidia (20–25 × 5–6 μ m) and basidiospores (4.2–6 × 3.6–5 μ m, Kotiranta & Saarenoksa 1990).

Neohypochnicium farinaceum J.H. Dong & C.L. Zhao, sp. nov.

Figs 72, 73

Index Fungorum number: IF848329; Facesoffungi number: FoF15436

Diagnosis – Differs from other *Neohypochnicium* species by the farinaceous basidiomata with slightly buff to buff, hypochnoid hymenial surface, monomitic hyphal system with clamped generative hyphae and subglobose to globose basidiospores measuring $7-8.5 \times 6.5-7.5 \mu m$.

Etymology – *farinaceum* (Lat.): referring to the farinaceous hymenophore of the type specimens.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 8 June 2020, CLZhao 18820 (SWFC, holotype).

Description – Basidiomata annual, resupinate, thin, without odor or taste, farinaceous when fresh, becoming brittle upon drying, up to 15 cm long, 3 cm wide, 50–200 μ m thick. Hymenial surface hypochnoid, slightly buff when fresh, turning to buff upon drying. Sterile margin narrow, slightly buff, thinning out, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, interwoven, 3–6 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia of two types: (1) tubular, slightly thick-walled, obtuse apex, 93–120 × 4–6.5 μ m; (2) clavate to subcylindrical, 50–90 ×5–8.5 μ m; cystidioles absent. Basidia clavate, slightly constricted in the middle, with 4 sterigmata and a basal clamp connection, 20–32.5 × 6.5–8.5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores subglobose to globose, colorless, thick-walled, smooth, cyanophilous, IKI–, (6.8–)7–8.5 × 6.5–7.5(–7.7) μ m, L = 7.68 μ m, W = 7.08 μ m, Q = 1.05–1.15 (n = 300/10).

Material examined (paratypes) – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 2 August 2019, CLZhao 18089; 8 June 2020, CLZhao 18792, CLZhao 18856; 8 June 2020, CLZhao 19022; on the trunk of angiosperm, leg. C.L. Zhao, 8 June 2020, CLZhao 18764, CLZhao 18771, CLZhao 18787, CLZhao 18798, CLZhao 18844, CLZhao 18850, CLZhao 18867, CLZhao 18881 (SWFC).

Figure 72 – Basidiomata of *Neohypochnicium farinaceum* (holotype). Scale bars: a = 1 cm, b = 0.5 mm.

Notes – In this study, using ITS, nLSU, mtSSU, RPB1 and TEF1 data (Fig. 13), the new species *Neohypochnicium farinaceum* is classified within *Neohypochnicium*, forming a monophyletic lineage and emerging as a sister to *N. murinum*. However, *N. murinum* can be delimited from *N. farinaceum* by its grey hymenial surface, and smaller basidiospores $(5.5-6.5 \times 5-6.3 \mu m)$.

Neohypochnicium farinaceum shares similarities with N. cremicolor (Bres.) N. Maek., N. geogenium, N. perlongicystidiosum, N. punctulatum (Cooke) N. Maek. and N. wakefieldiae (Bres.) N. Maek. in sharing the tubular cystidia. However, N. cremicolor differs from N. farinaceum by its porulose hymenial surface, smaller basidiospores (6–6.5 × 5–5.5 µm, Bernicchia & Gorjón 2010); N. geogenium differentiates from N. farinaceum in its tuberculate hymenial surface, narrower basidia (20–30 × 5–6 µm) and basidiospores (6–7.5 × 4–4.5 µm, Eriksson & Ryvarden 1976); *N. perlongicystidiosum* can be distinguished from *N. farinaceum* by its grandinioid to odontoid hymenial surface, larger basidia (46–70 × 9–12 µm) and basidiospores (10–12 × 9–11 µm, Maekawa et al 2023); *N. punctulatum* differs from *N. farinaceum* by its tuberculate hymenial surface, and smaller basidiospores (5.5–6.6 × 4.5–5 µm, Eriksson & Ryvarden 1976); *N. wakefieldiae* can be distiniguished from *N. farinaceum* by its porulose hymenial surface, and narrower basidiospores (6.5–8×5.5–6 µm, Bernicchia & Gorjón 2010).

Figure 73 – Microscopic structures of *Neohypochnicium farinaceum* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Clavate to subcylindrical cystidia. d Tubular cystidia. e A section of hymenium. Scale bars: $a-e = 10 \mu m$.

Neohypochnicium murinum J.H. Dong & C.L. Zhao, sp. nov.

Figs 74, 75

Index Fungorum number: IF848330; Facesoffungi number: FoF15437

Diagnosis – Differs from other *Neohypochnicium* species by the farinaceous basidiomata with grey, hypochnoid hymenial surface, monomitic hyphal system with clamped generative hyphae and subglobose basidiospores measuring $5.5-6.5 \times 5-6.3 \mu m$.

Etymology – *murinum* (Lat.): referring to the murine hymenial surface of the type specimens.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 9 June 2020, CLZhao 19012 (SWFC, holotype).

Description – Basidiomata annual, resupinate, without odor or taste, soft membranaceous when fresh, becoming furfuraceous upon drying, up to 10 cm long, 3.5 cm wide, 50–100 μ m thick. Hymenial surface hypochnoid, white to slightly grey when fresh, turning to grey upon drying. Sterile margin narrow, slightly grey, thinning out, up to 1 mm wide.

Figure 74 – Basidiomata of *Neohypochnicium murinum* (holotype). Scale bars: a = 1 cm, b = 0.5 mm.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thick-walled, frequently branched, interwoven, $3.5-5.5 \ \mu m$ in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia numerous, thick-walled, tubular, tapered and obtuse apex, $90-150 \times 8.5-12 \ \mu m$; cystidioles absent. Basidia clavate, constricted, some with a few guttulae, with 4 sterigmata and a basal clamp connection, $18-29 \times 5.5-8 \ \mu m$; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores subglobose, colorless, thick-walled, smooth, sometimes with a few guttula, cyanophilous, IKI–, $(5.3-)5.5-6.5(-6.8) \times 5-6.3(-6.5) \ \mu m$, L = 6.25 $\ \mu m$, W = 5.68 $\ \mu m$, Q = $1.08-1.11 \ (n = 210/7)$.

Material examined (paratypes) – China, Yunnan Province, Chuxiong, Zixishan National Forestry Park, GPS coordinates 25°01' N, 101°24' E, altitude 2500 m asl., on the trunk of *Pinus yunnanensis*, leg. C.L. Zhao, 30 June 2018, CLZhao 6855; Honghe, Pingbian County, Daweishan

National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 9 June 2020, CLZhao 19017, CLZhao 19020, CLZhao 19031, CLZhao 19125, CLZhao 19129; on the trunk of angiosperm, leg. C.L. Zhao, 9 June 2020, CLZhao 19067 (SWFC).

Figure 75 – Microscopic structures of *Neohypochnicium murinum* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Cystidia. d A section of hymenium. Scale bars: $a-d = 10 \mu m$.

Notes – Based on the ITS, nLSU, mtSSU, RPB1 and TEF1 data (Fig. 13), the new species *Neohypochnicium murinum* is grouped into *Neohypochnicium* forming a monophyletic lineage, and it is identified as a sister to *N. farinaceum*. However, *N. farinaceum* can be delimited from *N. murinum* by its buff hymenial surface, and larger basidiospores (7–8.5 × 6.5–7.5 μ m).

Neohypochnicium murinum shares similarities with N. albostramineum (Bres.) N. Maek, N. perlongicystidiosum and N. punctulatum by having tubular cystidia. However, N. albostramineum differs from N. murinum by its porulose hymenial surface, longer basidia (30– $40 \times 6-8 \mu$ m) and larger basidiospores (8–10 × 6.5–7 µm, Bernicchia & Gorjón 2010); *N. perlongicystidiosum* differentiates from *N. murinum* by its grandinioid to odontoid hymenial surface, larger basidia (46–70 × 9–12 μ m) and basidiospores (10–12 × 9–11 μ m, Maekawa et al. 2023); *N. punctulatum* differs from *N. murinum* in its tuberculate hymenial surface, longer basidia (30–40 × 6–7 μ m) and narrower basidiospores (5.5–6.6 × 4.5–5 μ m, Eriksson & Ryvarden 1976).

Neohypochnicium murinum is similar to *N. geogenium* and *N. michelii* in having the smooth basidiospores. However, *N. geogenium* differs from *N. murinum* due to its tuberculate hymenial surface, and narrower basidiospores (6–7.5 × 4–4.5 μ m, Eriksson & Ryvarden 1976); *N. michelii* differentiates from *N. murinum* in its porulose hymenial surface, and larger basidiospores (9–11 × 7–7.5 μ m, Telleria et al. 2010a).

Neohypochnicium velutinum J.H. Dong & C.L. Zhao, sp. nov. Figs 76, 77

Index Fungorum number: IF848331; Facesoffungi number: FoF15438

Diagnosis – Differs from other *Neohypochnicium* species by the panniform basidiomata with cream to slightly ochreous, velutinous hymenial surface, monomitic hyphal system with clamped generative hyphae and subglobose to globose basidiospores measuring $8.5-11.2 \times 7.5-10.5 \mu m$.

Etymology - velutinum (Lat.): referring to velutinous hymenophore of the type specimens.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 2 August 2019, CLZhao 18144 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, without odor or taste, soft when fresh, becoming panniform upon drying, up to 7 cm long, 2.5 cm wide, 100–200 μ m thick. Hymenial surface velutinous, cream when fresh, turning to cream to slightly ochreous upon drying. Sterile margin narrow, slightly gery, abrupt, up to 1.5 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thick-walled, frequently branched, interwoven, 4–6 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia of two types: (1) tubular, slightly thick-walled, 92–120 × 8–9.5 μ m; (2) capitate or subclavate, with three to four adventitious septa, 30–41 × 6–9 μ m; cystidioles absent. Basidia clavate, slightly constricted, with 4 sterigmata and a basal clamp connection, 30–50 × 8.5–12 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores subglobose to globose, colorless, smooth and verrucose, thick-walled, some with a few guttulae, cyanophilous IKI–, 8.5–11.2(–11.5) × (7–)7.5–10.5(–10.8) μ m, L = 9.96 μ m, W = 9.09 μ m, Q = 1.07–1.12 (n = 90/3).

Material examined (paratypes) – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 2 August 2019, CLZhao 18084, CLZhao 18085, CLZhao 18101; Dehong, Yingjiang County, Tongbiguan Provincial Nature Reserve, GPS coordinates 25°52' N, 97°38' E, altitude 1000 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 19 July 2023, CLZhao 30807, CLZhao 30839 (SWFC).

Notes – In this study, based on the ITS, nLSU, mtSSU, RPB1 and TEF1 data (Fig. 13), the new species *Neohypochnicium velutinum* is classified within *Neohypochnicium* and identified as a sister to *N. perlongicystidiosum*. However, *N. perlongicystidiosum* can be delimited from *N. velutinum* by its grandinioid to odontoid hymenial surface, and suburniform basidia $(46-70 \times 9-12 \mu m, Maekawa et al. 2023)$.

Neohypochnicium velutinum resembles N. albostramineum (Bres.) N. Maek., N. cremicolor, N. huinayense (Tellería, M. Dueñas & M.P. Martín) N. Maek., N. punctulatum and N. wakefieldiae in having the verrucose basidiospores. However, N. albostramineum differs from N. velutinum by its porulose hymenial surface,narrower basidia (30–40 × 6–8 µm) and smaller basidiospores (8–10 × 6.5–7 µm, Bernicchia & Gorjón 2010); N. cremicolor can be distinguished from N. velutinum in its porulose hymenial surface,narrower basidia (30–40 × 6–8 µm) and smaller basidiospores (6–6.5 × 5–5.5 µm, Bernicchia & Gorjón 2010); N. huinayense differs from N. velutinum by its porulose hymenial surface, shorter basidia (25–30 × 7–9 µm) and basidiospores (6.5–8 × 6.5–8 µm, Crous et al. 2013); N. punctulatum can be distinguished from N. velutinum in its tuberculate hymenial surface, narrower basidia (30–40 × 6–7 μ m) and smaller basidiospores (5.5–6.6 × 4.5–5 μ m, Eriksson & Ryvarden 1976); *N. wakefieldiae* differs from *N. velutinum* due to its porulose hymenial surface, narrower basidia (30–40 × 6–8 μ m) and smaller basidiospores (6.5–8× 5.5–6 μ m, Bernicchia & Gorjón 2010).

Figure 76 – Basidiomata of *Neohypochnicium velutinum* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Neohypochnicium yunnanense J.H. Dong & C.L. Zhao, sp. nov.

Figs 78, 79

Index Fungorum number: IF848332; Facesoffungi number: FoF15439

Diagnosis – Differs from other *Neohypochnicium* species by the corticous basidiomata with cream, smooth hymenial surface, monomitic hyphal system with clamped generative hyphae and subglobose to globose basidiospores measuring $7-9.3 \times 6.5-8.7 \mu m$.

Etymology - yunnanense (Lat.): referring to the locality (Yunnan Province) of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 3 August 2019, CLZhao 18525 (SWFC, holotype).

Figure 77 – Microscopic structures of *Neohypochnicium velutinum* (drawn from the holotype). a Basidiospores. b Subclavate cystidia. c Tubular cystidia. d Basidia and basidioles. e A section of hymenium. Scale bars: $a-e = 10 \mu m$.

Figure 78 – Basidiomata of *Neohypochnicium yunnanense* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Description – Basidiomata annual, resupinate, adnate, without odor or taste, soft corticous when fresh, becoming hard corticous upon drying, up to 10 cm long, 4.5 cm wide, 200–250 μ m thick. Hymenial surface smooth, white to slightly cream when fresh, turning to cream upon drying. Sterile margin narrow, slightly cream, abrupt, up to 2 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin to thick-walled, branched, more or less interwoven, 2.5–4.5 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia of two types: (1) tubular, slightly thick-walled, with two or three adventitious septa, 72–109 × 6.5–10 μ m; (2) cylindrical, slightly sinuous, 40–70 × 7–11 μ m; cystidioles absent. Basidia clavate, slightly constricted, with 4 sterigmata and a basal clamp connection, 30–42 × 7.5–9 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores subglobose to globose, colorless, thick-walled, smooth, cyanophilous, IKI–, (6.8–)7–9.3(–9.5) × (6.2–)6.5–8.7(–9) μ m, L = 8.18 μ m, W = 7.70 μ m, Q = 1.06 (n = 30/1).

Notes – In this study, based on the ITS, nLSU, mtSSU, RPB1 and TEF1 data (Fig. 13), the new species *Neohypochnicium yunnanense* is classified within *Neohypochnicium*. And is clustered with *N. daweishanense* and *N. geogenium*. However, *N. daweishanense* can be delimited from *N. yunnanense* by its slightly yellowish hymenial surface and membranaceous basidiomata. *N. geogenium* can be distinguished from *N. yunnanense* by its tuberculate hymenial surface, smaller basidia $(20-30 \times 5-6 \mu m)$ and narrower basidiospores $(6-7.5 \times 4-4.5 \mu m, Eriksson & Ryvarden 1976).$

Figure 79 – Microscopic structures of *Neohypochnicium yunnanens* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Subcylindrical cystidia. d Tubular cystidia. e A section of hymenium. Scale bars: $a-e = 10 \mu m$.

Neohypochnicium yunnanense resembles *N. aotearoae* and *N. asiaticum*, characterized by the presence of smooth hymenial surface. However, *N. aotearoae* differs can be distinguished by *N. yunnanense* by its membranaceous basidiomata, and verrucose basidiospores (5.6–8.7 × 4.8–7.3 μ m, Paulus et al. 2007); *N. asiaticum* can be differentiated *N. yunnanense* by its verrucose and narrower basidiospores (7–8 × 5.5–6.5 μ m, Maekawa et al. 2023).

Neohypochnicium yunnanense shares similarities with N. michelii, N. microsporum and N. subrigescens, all of which exhibit smooth basidiospores. The species N. michelii can be

distinguished from *N. yunnanense* by its porulose hymenial surface, and smaller basidia $(20-30 \times 6-7.5 \,\mu\text{m})$, Telleria et al. 2010a); *N. microsporum* can be differentiated from *N. yunnanense* by its smaller basidiospores $(3.9-5 \times 3.8-5 \,\mu\text{m})$, Gruhn et al. 2017); *N. subrigescens* can be distinguished from *N. yunnanense* in its both smaller basidia $(20-25 \times 5-6 \,\mu\text{m})$ and basidiospores $(4.2-6 \times 3.6-5 \,\mu\text{m})$, Kotiranta & Saarenoksa 1990).

Neohypochnicium zixishanense J.H. Dong & C.L. Zhao, sp. nov.

Figs 80, 81

Index Fungorum number: IF848333; Facesoffungi number: FoF15440

Diagnosis – Differs from other *Neohypochnicium* species by the farinaceous basidiomata with slightly buff, hypochnoid hymenial surface, monomitic hyphal system with clamped generative hyphae and subglobose basidiospores measuring $6-7.7 \times 5-6.5 \mu m$.

Figure 80 – Basidiomata of *Neohypochnicium zixishanense* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Etymology – zixishanense (Lat.): referring to the provenance (Zixishan) of the type specimen.

Type – China, Yunnan Province, Chuxiong, Zixishan National Forestry Park, GPS coordinates 25°01' N, 101°24' E, altitude 2500 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 1 July 2018, CLZhao 7270 (SWFC, holotype).

Description – Basidiomata annual, resupinate, loosely adnate, thin, without odor or taste, farinaceous when fresh, becoming fragile upon drying, up to 6 cm long, 1.5 cm wide, 100–150 μ m thick. Hymenial surface hypochnoid, white when fresh, turning to slightly buff upon drying. Sterile margin narrow, white to slightly buff, slightly fimbriate, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, more or less interwoven, 4–5.5 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia numerous, tubular, slightly thick-walled, with three adventitious septa or not, 112–130 × 10–14 μ m; cystidioles absent. Basidia clavate, slightly constricted in the middle to somewhat sinuous, some with several adventitious septa, with 4 sterigmata and a basal clamp connection, 30–40 × 5.5–7 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores subglobose, colorless, thick-walled, smooth, cyanophilous, IKI–, 6–7.7(–8) × 5–6.5(–6.8) μ m, L = 6.97 μ m, W = 5.90 μ m, Q = 1.18 (n = 30/1).

Figure 81 – Microscopic structures of *Neohypochnicium zixishanense* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Tubular cystidia. d A section of hymenium. Scale bars: $a-d = 10 \mu m$.

Notes – Based on the ITS, nLSU, mtSSU, RPB1 and TEF1 data (Fig. 13), the new species *Neohypochnicium zixishanense* is grouped into *Neohypochnicium*, (Fig. 14), forming a monophyletic lineage closely associated with *N. aotearoae* and *N. patagonicum* (Gorjón & Hallenb.) N. Maek. However, *N. aotearoae* can be delimited from *N. zixishanense* by its membranaceous basidiomata, and verrucose basidiospores (5.6–8.7 × 4.8–7.3 μ m, Paulus et al. 2007); *N. patagonicum* can be distinguished from *N. zixishanense* by its grandinioid hymenial surface, longer basidia (40–60 × 6–8 μ m) and larger basidiospores (8–10 × 7.5–8.5 μ m, Gorjón & Hallenberg 2013).

Neohypochnicium zixishanense shares similarities with *N. michelii*, *N. microsporum* and *N. subrigescens* characterized by the presence of smooth basidiospores. However, *N. michelii* can be distiniguished from *N. zixishanense* by its porulose hymenial surface, shorter basidia (20–30 × 6–7.5 µm) and larger basidiospores (9–11 × 7–7.5 µm, Telleria et al. 2010a); *N. microsporum* differentiates from *N. zixishanense* in its smaller basidiospores (3.9–5 × 3.8–5 µm, Gruhn et al. 2017); *N. subrigescens* is characterized by its shorter basidia (20–25 × 5–6 µm) and smaller basidiospores in contrast to *N. zixishanense* (4.2–6 × 3.6–5 µm, Kotiranta & Saarenoksa 1990).

Phanerochaetaceae Jülich

Index Fungorum number: IF80024; Facesoffungi number: FoF15441 Type genus – *Phanerochaete* P. Karst.

Donkiella J.H. Dong & C.L. Zhao, gen. nov.

Index Fungorum number: IF850341; Facesoffungi number: FoF15442

Etymology - Donkiella (Lat.): referring to the related genus Donkia.

Type species – Donkiella yunnanensis J.H. Dong & C.L. Zhao.

Description – Basidiomata annual, resupinate, adnate, membranaceous. Hymenial surface smooth, cream to slightly grey. Hyphal system monomitic; generative hyphae with simple septa, colorless, slightly thick-walled, subhymenial hyphae usually covered by the crystals. Cystidia and cystidioles absent. Basidia subclavate to cylindrical, with 4 sterigmata and a basal simple septum. Basidiospores ellipsoid, colorless, thin-walled, smooth, IKI–, CB–.

Notes – In our phylogenetical analyses (Fig. 16), *Donkiella* was identified as a monophyletic group, typified by *D. yunnanensis*. The new genus *Donkiella* falls within Phanerochaetaceae (Polyporales) and is closely related to *Donkia* Pilát. However, *Donkia* is distinguished from *Donkiella* by its pileate basidiomata with white to cream context (Chen et al. 2021), and pale fawn tan, cinnamon to orange-brown hymenial surface having odontoid to hydnoid hymenophore (Pilát 1936, Maas Geesteranus 1971, Nakasone 1990, Moreno et al. 2007).

Donkiella resembles Hyphodermella J. Erikss. & Ryvarden in sharing resupinate basidiomata, simple-septate generative hyphae, ellipsoid, thin-walled basidiospores. However, Hyphodermella differs from Donkiella by its grandinioid to odontioid or hydnoid hymenial surface with small aculei and a fibrillose apex, and clavate to suburniform basidia (Eriksson & Ryvarden 1976, Bernicchia & Gorjon 2010). Donkiella seemingly can been included in Efibula or Phanerochaete because of its monomitic hyphal system with primarily simple-septate, mostly ellipsoid basidiospores. Efibula can be distinguished from Donkiella mainly by its effused, subceraceous or ceraceous basidiomata and clavate basidia (Wu 1990); Phanerochaete can be distinguished from Donkiella mainly by its smooth, tuberculate, hydnaceous or velutinous hymenial surface, with the projecting cystidia (Bernicchia & Gorjon 2010). In this study, Donkiella, originating from the subtropical regions, suggests the possibility of discovering new corticioid taxa through further investigations and molecular analyses.

Donkiella yunnanensis J.H. Dong & C.L. Zhao, sp. nov.

Index Fungorum number: IF850342; Facesoffungi number: FoF15443

Figs 82, 83

Diagnosis – Differs from other *Donkiella* species by the membranaceous basidiomata with cream to slightly grey, smooth hymenial surface, monomitic hyphal system with septate generative hyphae and ellipsoid basidiospores measuring $4.2-6 \times 2.5-3.2 \,\mu\text{m}$.

Etymology - yunnanensis (Lat.): referring to the locality (Yunnan Province) of the type specimen.

Type – China, Yunnan Province, Puer, Jingdong County, Taizhong Town, Ailaoshan National Nature Reserve, GPS coordinates 24°49' N, 100°54' E, altitude 1550 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 4 October 2017, CLZhao 3931 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, very difficult to separate from substrate, without odor or taste, membranaceous when fresh, becoming coriaceous upon drying, up to 10 cm long, 2 cm wide, 50–100 μ m thick. Hymenial surface smooth, white to cream when fresh, turning to cream to slightly grey upon drying. Sterile margin narrow, cream, abrupt, up to 0.5 mm wide.

Figure 82 – Basidiomata of *Donkiella yunnanensis* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Figure 83 – Microscopic structures of *Donkiella yunnanensis* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c A section of hymenium. Scale bars: $a-d = 10 \mu m$.

Hyphal system monomitic, generative hyphae with simple septa, colorless, thick-walled, frequently branched, interwoven, subhymenial hyphae usually covered by the crystals, 3–6 μ m in diameter, IKI–, CB–, tissues unchanged in KOH. Cystidia and cystidioles absent. Basidia subclavate to cylindrical, slightly sinuous, with 4 sterigmata and a basal simple septum, 16.5–25 × 4–5.5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores ellipsoid, colorless, thin-walled, smooth, IKI–, CB–, (4–)4.2–6 × 2.5–3.2(–3.5) μ m, L = 5.14 μ m, W = 2.87 μ m, Q = 1.81–1.92 (n = 60/2).

Material examined (paratype) – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 3 August 2019, CLZhao 18292 (SWFC).

Notes – Based on the ITS, nLSU, RPB1, RPB2 and TEF1 data (Fig. 16), the newly proposed genus *Donkiella* is identified as a monophyletic group within Phanerochaetaceae. *Donkiella yunnanensis* exhibits similarities with *H. poroides* Y.C. Dai & C.L. Zhao and *H. rosae* (Bres.) Nakasone particularly in the shared ellipsoid shape of basidiospores. However, *H. poroides* differs from *D. yunnanensis* by its poroid hymenial surface, and shorter basidiospores ($3-3.5 \times 2.5-3 \mu m$, Zhao et al. 2017a); *H. rosae* can be distinguished from *D. yunnanensis* in its odontoid hymenial surface, larger basidia ($25-35 \times 5.5-7.5 \mu m$) and basidiospores ($7-8.5 \times 4.5-5.5 \mu m$, Bernicchia & Gorjón 2010).

Phanerochaete P. Karst

Index Fungorum number: IF18245; Facesoffungi number: FoF15445 Type species – *Phanerochaete alnea* (Fr.) P. Karst.

Notes - Phanerochaete P. Karst. is a member of the wood-inhabiting fungi, which is typified by P. alnea (Fr.) P. Karst (Karsten 1889). A molecular study involving Phanerochaete based on the ribosomal DNA (rDNA) sequences, revealed the phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi, in which P. chrysosporium Burds. nested into phlebioid clade in Polyporales (Binder et al. 2005). A reassessment of the taxonomy of Phanerochaete, using a four gene dataset and extensive ITS sampling, indicated that Phanerochaete sensu lato was polyphyletic, distributed across nine lineages in the phlebioid clade, in which six lineages were associated with described genera (Floudas & Hibbett 2015). Miettinen et al. (2016) explored the DNA-phylogeny-based and morphology-based approaches to reconcile the polypores and genus concepts in Phanerochaetaceae, which the macromorphology of fruiting bodies and hymenophore construction did not accurately reflect monophyletic groups and Ceriporia inflata B.S. Jiaand B.K. Cui was combined into Phanerochaete. Amplifying nrITS, nrLSU and RPB1 genesacross the Polyporales revealed that 11 genera formed a cluster within Phanerochaetaceae, while Hapalopilaceae and Bjerkanderaceae, were placed as synonyms of Phanerochaetaceae (Justo et al. 2017). Recent research, supported by morphology and phylogenetic analyses, has shown that many new taxa of Phanerochaete s.s., elucidating the taxonomic status of these additions (Wu et al. 2018a, Xu et al. 2020c, Chen et al. 2021, Wang & Zhao 2021a, Yu et al. 2023a). In this study, we describe one new species of Phanerochaete from China, based on the morphological characteristics and phylogenetic analyses inferred from ITS, nLSU, RPB1, RPB2 and TEF1 sequences.

Phanerochaete mopanshanensis J.H. Dong & C.L. Zhao, sp. nov. Figs 84, 85

Index Fungorum number: IF850343; Facesoffungi number: FoF15444

Diagnosis – Differs from other *Phanerochaete* species by the coriaceous basidiomata with buff to slightly yellowish, smooth hymenial surface, monomitic hyphal system with septate generative hyphae and ellipsoid basidiospores measuring $4.2-5.3 \times 2.8-3.5 \,\mu\text{m}$.

Etymology – mopanshanensis (Lat.): referring to the locality (Mopanshan) of the type specimen.

Type – China, Yunnan Province, Yuxi, Xinping County, Mopanshan National Forestry Park, GPS coordinates 23°51' N, 101°16' E, altitude 1790 m asl., on the fallen branch of *Quercus semecarpifolia*, leg. C.L. Zhao, 19 August 2017, CLZhao 2357 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, without odor or taste, soft membranaceous when fresh, becoming coriaceous upon drying, up to 3 cm long, 1.5 cm wide, 50–150 μ m thick. Hymenial surface smooth, hypochnoid, cream to buff when fresh, turning to buff to slightly yellowish upon drying. Sterile margin narrow, cream to buff, fimbriate, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with simple septa, colorless, thick-walled, branched, interwoven, encrusted with small hyaline crystals, 4–7 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia and cystidioles absent. Basidia subclavate, slightly sinuous, with 4 sterigmata and a basal simple septum, 20–28.5 × 5–6.5 μ m; basidioles dominant, in shape

similar to basidia, but slightly smaller. Basidiospores ellipsoid, colorless, thin-walled, smooth, IKI–, CB–, (4–)4.2–5.3(–5.5) × 2.8–3.5 μ m, L = 4.75 μ m, W = 3.19 μ m, Q = 1.46 (n = 30/1).

Notes – In this study, based on the ITS, nLSU, RPB1, RPB2 and TEF1 data, the new species *Phanerochaete mopanshanensis* is placed within *Phanerochaete* (Fig. 16), forming a monophyletic lineage closely associated with *P. rhizomorpha* C.C. Chen, Sheng H. Wu & S.H. H and *P. sanguineocarnosa* Floudas & Hibbett. However, *P. rhizomorpha* can be delimited from *P. mopanshanensis* by its buff to pale ochraceous hymenial surface, and narrower basidia (25–28 × $4-5 \mu m$, Chen et al. 2021); *P. sanguineocarnosa* is distinguished from *P. mopanshanensis* by its pale yellow to brown hymenial surface, and cylindrical basidia (24–30 × 4–5.5 μm , Floudas & Hibbett 2015).

Figure 84 – Basidiomata of *Phanerochaete mopanshanensis* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Figure 85 – Microscopic structures of *Phanerochaete mopanshanensis* (drawn from the holotype). A Basidia and basidioles. b Basidiospores. c A section of hymenium. Scale bars: $a = 5 \mu m$, $b-c = 10 \mu m$.

Phanerochaete mopanshanensis shares similarities with *P. brunnea* S.H. Wu, *P. pruinosa* C.L. Zhao and D.Q. Wang and *P. spadicea* C.C. Chen & Sheng H. Wu characterized by the lack of cystidia. However, *P. brunnea* distiniguished from *P. mopanshanensis* by its cinnamon-pink to cartridge buff hymenial surface, narrower basidia $(18-25 \times 4.2-5 \ \mu\text{m}, Wu \ 1990)$; *P. pruinose* distinguished from *P. mopanshanensis* by its white to slightly cream, pruinose hymenial surface, narrower basidia $(13-24 \times 3.5-4.5 \ \mu\text{m})$ and basidiospores $(3.5-6.7 \times 1.5-2.7 \ \mu\text{m}, Wang \& Zhao 2021a)$; *P. spadicea* differentiates from *P. mopanshanensis* in its buff to pale brown hymenial surface, narrower basidia $(23-24 \times 3.6-4.3 \ \mu\text{m})$ and basidiospores $(4.2-5.2 \times 1.8-2.2 \ \mu\text{m}, Chen et al. 2021)$.

Phlebiopsis Jülich

Index Fungorum number: IF25478; Facesoffungi number: FoF15446

Type species – *Phlebiopsis gigantea* (Fr.) Jülich

Notes – *Phlebiopsis* Jülich is a member of the corticioid fungi, typified by *P. gigantea* (Fr.) Jülich. (Jülich 1978). The systematics of *Phlebiopsis* has benefited from numerous molecular studies (Larsson 2007a, Binder et al. 2013, Floudas & Hibbett 2015, Miettinen et al. 2016, Justo et

al. 2017, Zhao et al. 2019). Larsson (2007a) presented the classification of corticioid fungi proposing that Phlebiopsis flavidoalba (Cooke) Hjortstam was nested within Phanerochaetaceae. Nevertheless, Binder et al. (2013) showed that Phlebiopsis flavidoalba belongs to the phlebioid clade and appears to be grouped with Phanerochaete lamprocystidiata Sheng H. Wu. A study of Phanerochaete P. Karst. by Floudas & Hibbett (2015) using a four gene dataset, suggested that Phlebiopsis s.s. clustered into the phlebioid clade and group with Phaeophlebiopsis Floudas & Hibbett and Rhizochaete Gresl., Nakasone & Rajchenb. Furthermore, Miettinen et al. (2016) demonstrated that the generic type species Phlebiopsis gigantea is associated with Phaeophlebiopsis and Rhizochaete. Using a multi-gene dataset, Justo et al. (2017) proposed a revised family-level classification of Polyporales and confirmed that P. gigantea belongs to Phanerochaetaceae and clustered with P. crassa (Lév.) Floudas & Hibbett and P. galochroa (Bres.) Hjortstam & Ryvarden. Zhao et al. (2019) introduced a new species *Phlebiopsis yunnanensis* C.L. Zhao, based on morphological characters and rDNA sequences, in which this species was found to be related to P. gigantea and P. lamprocystidiata. Recent research, supported by both morphology and phylogeny has revealed many new taxa within *Phlebiopsis* and elucidated their taxonomic status (Xu et al. 2020b, Chen et al. 2021, Li et al. 2021, Zhao et al. 2021, Li et al. 2023a). In this study, one new species of *Phlebiopsis* is introduced from China, distinguished through an examination of both morphological characteristics and phylogenetic analyses inferred from ITS, nLSU, RPB1, RPB2 and TEF1 sequences.

Phlebiopsis daweishanensis J.H. Dong & C.L. Zhao, sp. nov.

Figs 86, 87

Index Fungorum number: IF 850344; Facesoffungi number: FoF15447

Diagnosis – Differs from other *Phlebiopsis* species by the membranaceous basidiomata with cream to slightly brown, smooth hymenial surface, monomitic hyphal system with septate generative hyphae and broadly ellipsoid to ellipsoid basidiospores measuring $4.5-5.2 \times 4-4.6 \mu m$.

Etymology - daweishanensis (Lat.): referring to the locality (Daweishan) of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 2 August 2019, CLZhao 17984 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, very difficult to separate from substrate, without odor or taste, membranaceous when fresh, becoming hard membranaceous upon drying, up to 10 cm long, 2 cm wide, 50–100 μ m thick. Hymenial surface smooth, cream when fresh, turning to cream to slightly brown upon drying. Sterile margin cream, thinning out, up to 0.5 mm wide.

Hyphal system monomitic, generative hyphae with simple septa, colorless, slightly thickwalled, branched, interwoven, 3–5.5 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia numerous, conical, thick-walled, heavily encrusted with crystalline crystals, 30–55 × 6.5– 12 μ m; cystidioles absent. Basidia subclavate, slightly sinuous, with 4 sterigmata and a basal simple septum, 15–25 × 5–7.5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores broadly ellipsoid to ellipsoid, colorless, thin-walled, smooth, IKI–, CB–, (4.3–)4.5–5.2(–5.5) × (3.5–)4–4.6(–5) μ m, L = 4.93 μ m, W = 4.15 μ m, Q = 1.19 (n = 30/1).

Notes – In this analysis, based on the ITS, nLSU, RPB1, RPB2 and TEF1 data (Fig. 16), the new species *Phlebiopsis daweishanensis* is placed within *Phlebiopsis*, forming a monophyletic lineage.

Phlebiopsis daweishanensis resembles *P. lacerata* C.L. Zhao, *P. odontoidea* C.C. Chen & Sheng H. Wu and *P. yunnanensis* C.L. Zhao in sharing the ellipsoid basidiospores. However, *P. lacerata* differs from *P. daweishanensis* by its poroid hymenial surface, and narrower basidiospores $(4-5.5 \times 3-3.5 \ \mu\text{m})$, Xu et al. 2020b); *P. odontoidea* differentiates from *P. daweishanensis* in its odontioid hymenial surface, narrower basidia $(22-25 \times 4-5 \ \mu\text{m})$ and longer basidiospores $(5.2-5.9 \times 3.2-3.7 \ \mu\text{m})$, Chen et al. 2021); *P. yunnanensis* differs from *P. daweishanensis* due to its odontioid hymenial surface, narrower basidia $(10-21 \times 3.5-4.5 \ \mu\text{m})$ and smaller basidiospores $(3.5-4.5 \times 2.5-3.5 \ \mu\text{m})$, Zhao et al. 2019).

Figure 86 – Basidiomata of *Phlebiopsis daweishanensis* (holotype). Scale bars: a = 1 cm, b = 0.5 mm.

Steccherinaceae Parmasto

Index Fungorum number: IF81420; Facesoffungi number: FoF15448 Type genus – *Steccherinum* Gray

Etheirodon Banker

Index Fungorum number: IF17571; Facesoffungi number: FoF15449 Type species – *Etheirodon fimbriatum* (Pers.) Banker Notes – The genus *Etheirodon* was established by Banker (1902) and typified by *E. fimbriatum* (Pers.) Banker. Banker (1902) proposed the genus name as *Etheirodon* after a thorugh study of its type species. Eriksson (1958) suggested the combined species *Steccherinum fimbriatum* (Pers.) J. Erikss, focusing on the study of Heterobasidiomycetes and Homobasidiomycetes-aphyllophorales in muddus National Park in North Sweden. The systematic study of Polyporaceae was presented within the overview of Polyporales, reaffirming the established placement of *Etheirodon* (Zmitrovich 2018). Westphalen et al. (2021) provided comprehensive morphological and phylogenetic analyses on the hydnoid specimens of Steccherinam Gray. In this study, a novel species *E. roseoalbum* is proposed based on morphological characteristics and phylogenetic analyses inferred from ITS, nLSU, mtSSU, RPB1, RPB2 and TEF1 sequences.

Etheirodon roseoalbum J.H. Dong & C.L. Zhao, sp. nov.

Index Fungorum number: IF850345; Facesoffungi number: FoF15450

Figs 88, 89

Diagnosis – Differs from other *Etheirodon* species by the ceraceous basidiomata with purplish to rose, grandinoid hymenial surface, monomitic hyphal system with septate generative hyphae and ellipsoid basidiospores measuring $3.5-4.2 \times 2.5-3.2 \mu m$.

Figure 87 – Microscopic structures of *Phlebiopsis daweishanensis* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Conical cystidia. d A section of hymenium. Scale bars: $a = 5 \mu m$, $b-d = 10 \mu m$.

Figure 88 – Basidiomata of *Etheirodon roseoalbum* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Etymology – *roseoalbum* (Lat.): referring to the white to pinkish hymenial surface of the type specimen.

Type – China, Yunnan Province, Dali, Weishan County, Qinghua Town, GPS coordinates 25°08' N, 100°10' E, altitude 2000 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 18 October 2022, CLZhao 24770 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, soft ceraceous, without odor or taste when fresh, becoming hard ceraceous upon drying, up to 15 cm long, 3 cm wide, $100-150 \mu m$ thick. Hymenial surface grandinoid, white to slightly purplish when fresh, turning to purplish to rose upon drying. Sterile margin distinct, white to slightly purplish, fimbriate, up to 0.5–1 mm wide.

Hyphal system dimitic, generative hyphae with simple septa, colorless, thin to slightly thickwalled, branched, more or less interwoven, $3-5 \mu m$ in diameter; skeletal hyphae yellowish to pale brown, thick-walled to solid, 4–5.5 μ m diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia and cystidioles absent. Basidia clavate, slightly constricted, with 4 sterigmata and a basal simple septum, 20–28 × 4.5–6 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores ellipsoid, thin-walled, colorless, smooth, IKI–, CB–, 3.5–4.2(–4.5) × 2.5–3.2(–3.5) μ m, L = 3.89 μ m, W = 2.85 μ m, Q = 1.37–1.45 (n = 60/2).

Material examined (paratype) – China, Yunnan Province, Dali, Weishan County, Qinghua Town, GPS coordinates 25°08' N, 100°10' E, altitude 2000 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 18 October 2022, CLZhao 24903 (SWFC).

Figure 89 – Microscopic structures of *Etheirodon roseoalbum* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c A section of hymenium. Scale bars: $a = 5 \mu m$, $b-c = 10 \mu m$.

Notes – In this study, the new species *Etheirodon roseoalbum* is classified within *Etheirodon* based on ITS, nLSU, mtSSU, RPB1, RPB2, and TEF1 data (Fig. 17), and it is identified *E. fimbriatum* (Pers.) Banker. However, *E. fimbriatum* can be distinguished from *E. roseoalbum* by its odontioid hymenial surface, smaller basidia (18–20 × 4–4.5 μ m) and narrower basidiospores (3.25–4 × 2.25–2.5 μ m, Hjortstam & Ryvarden 2007). In this study, the new species *E. roseoalbum* doesn't contain cystidia, however, the description of the genus has encrusted cystidia, and perhaps both species are postmature or the lacking of nutrition or energy or other environmental conditions or some nucleotide base deletion.

Etheirodon roseoalbum shares similarities with E. purpureum Westphalen, in having a fimbriate margin and ellipsoid basidiospores. However, E. purpureum differs itself from
E. roseoalbum in its shorter basidia ($10-15 \times 4-5.5 \mu m$) and narrower basidiospores ($4-4.5 \times 2-2.5 \mu m$, Westphalen et al. 2021).

Steccherinum Gray

Index Fungorum number: IF18582; Facesoffungi number: FoF15453

Type species - Steccherinum ochraceum (Pers. ex J.F. Gmel.) Gray

Notes - The genus Steccherinum Gray was established by Gray (1821) and typified by S. ochraceum (Pers. ex J.F. Gmel.) Gray. Molecular phylogenies have increased the knowledge concerning the evolution of Steccherinum (Miettinen et al. 2012, Binder et al. 2013, Justo et al. 2017, Westphalen et al. 2018, Westphalen et al. 2021, Wu et al. 2021a, b, Dong et al. 2022, 2023b). Based on sequences of the gene regions ITS, nLSU, mtSSU, atp6, rpb2, and tef1, Miettinen et al. (2012) demonstrated that the phylogeny of the poroid and hydnoid taxa, including Antrodiella Ryvarden and I. Johans., Junghuhnia Corda and Steccherinum (Polyporales, Basidiomycota) clusters together, revealing that Steccherinum contains both hydnoid and poroid species. Using whole genome sequence data in comparison to extensively sampled multigene datasets. Binder et al. (2013), indicated that Steccherinum species belonged to the residual polyporoid clade, and the generic type (S. ochraceum) was grouped with Junghuhnia nitida (Pers.) Ryvarden Justo et al. (2017) clarified the family level classification of 18 families within Polyporales (Basidiomycota), indicating that Steccherinum belonged to Steccherinaceae Parmasto. Westphalen et al. (2018) conducted morphological and multigene analyses of Junghuhnia s.lat., in which a new species Steccherinum neonitidum Westphalen & Tomšovský and three new combinations, S. meridionale (Rajchenb.) Westphalen, Tomšovský & Rajchenberg, S. polycystidiferum (Rick) Westphalen, Tomšovský & Rajchenb. and S. undigerum (Berk. & M.A. Curtis) Westphalen & Tomšovský were reported. Westphalen et al. (2021) conducted morphological and phylogenetic analyses on hydnoid specimens of Steccherinaceae, unveiling four genera as Cabalodontia, Etheirodon, Metuloidea, and Steccherinum, and describing three new neotropical species, including S. larssonii Westphalen & Motato-Vásq.

In recent, phylogenetic analyses on *Steccherinum* from China, based on ITS+nLSU sequences and morphology, several new *Steccherinum* species were described; *Steccherinum fissurutum* J.H. Dong & C.L. Zhao, *S. fragile* Z.B. Liu & Y.C. Dai, *S. hirsutum* Y.X. Wu & C.L. Zhao, *S. incrustans* Z.B. Liu, Y.C. Dai & Jing Si, *S. juniperi* Z.B. Liu, Y.C. Dai & Jing Si, *S. puerense* Y.X. Wu, J.H. Dong & C.L. Zhao, *S. subtropicum* J.H. Dong & C.L. Zhao, *S. rubigimaculatum* Y.X.Wu, J.H. Dong & C.L. Zhao, *S. subtropicum* J.H. Dong & C.L. Zhao, *S. tenuissimum* C.L. Zhao & Y.X. Wu, *S. xanthum* C.L. Zhao & Y.X. Wu, and *S. yunnanense* Y.X. Wu & C.L. Zhao (Liu & Dai 2021, Wu et al. 2021a, b, Dong et al. 2022, 2023b, Liu et al. 2023d). Hence, based on morphological and molecular systematics evidence, we propose three new species: *S. lincangense*, *S. longiaculeiferum* and *S. weishanense*.

Steccherinum lincangense J.H. Dong & C.L. Zhao, sp. nov.

Figs 90, 91

Index Fungorum number: IF850347; Facesoffungi number: FoF15454

Diagnosis – Differs from other *Steccherinum* species by the coriaceous basidiomata with slightly buff, odontioid hymenial surface with subulate aculei, 2–4 per mm, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $3.8-4.2 \times 2.5-2.8$ µm.

Etymology - lincangense (Lat.): referring to the locality (Lincang) of the type specimen.

Type – China, Yunnan Province, Lincang, Yun County, Maolan Town, Shiyan Village, GPS coordinates 24°33' N, 100°22' E, altitude 2000 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 19 October 2022, CLZhao 24988 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, soft coriaceous, without odor or taste when fresh, becoming coriaceous upon drying, up to 15 cm long, 2 cm wide, 50–150 μ m thick. Hymenial surface odontioid, with subulate aculei, 2–4 per mm, up to 1–1.5 mm long, cream when

fresh, turning to slightly buff upon drying. Sterile margin white to cream, slightly fimbriate, up to 2 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin to thick-walled, branched, interwoven, 3–4 μ m in diameter, IKI–, CB–, tissues unchanged in KOH. Skeletocystidia numerous, thick-walled, strongly encrusted in the obtuse apex, sometimes with several dissepiments, 45–90 × 6.5–9 μ m; cystidioles absent. Basidia clavate, sometimes slightly sinuous, with 4 sterigmata and a basal clamp connection, 9–13.5 × 3.5–5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores ellipsoid, thin-walled, colorless, smooth, IKI–, CB–, (3.5–)3.8–4.2(–4.5) × (2.3–)2.5–2.8 μ m, L = 3.96 μ m, W = 2.65 μ m, Q = 1.55 (n = 30/1).

Figure 90 – Basidiomata of *Steccherinum lincangense* (holotype). Scale bars: a = 1 cm, b = 2 mm.

Figure 91 – Microscopic structures of *Steccherinum lincangense* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Skeletocystidia. d A section of hymenium. Scale bars: $a = 5 \mu m$, $b-d = 10 \mu m$.

Notes – In the present study, based on the ITS, nLSU, mtSSU, RPB1, RPB2 and TEF1 data (Fig. 17), the new species *Steccherinum lincangense* is grouped within *Steccherinum*, and clusters with *S. tenuissimum* and *S. xanthum*. However, *S. tenuissimum* can be delimited from *S. lincangense* by its shorter aculei (0.2–0.5 mm), and smaller skeletocystidia (22–39 × 4.5–6 μ m, Wu et al. 2021b); *S. xanthum* differs from *S. lincangense* by its buff hymenial surface and shorter aculei (0.1–0.3 mm, Wu et al. 2021b).

Steccherinum lincangense resembles S. fissurutum, S. fragile and S. punctatum in having the monomitic hyphal system. However, S. fissurutum differs from S. lincangense by its grandinoid and cracked hymenial surface, shorter skeletocystidia (26.5–36 × 6.5–9.5 μ m) and longer basidiospores (4.5–6 × 2.5–3 μ m, Dong et al. 2023b); S. fragile differentiates from S. lincangense in its poroid hymenial surface, and smaller basidiospores (2.8–3.1 × 2.1–2.2 μ m, Liu & Dai 2021); S. punctatum differs from S. lincangense by its grandinoid hymenial surface, and larger basidia (23–27 × 5.5–7.5 μ m, Dong et al. 2023b).

Steccherinum longiaculeiferum J.H. Dong & C.L. Zhao, sp. nov. Figs 92, 93

Index Fungorum number: IF850348; Facesoffungi number: FoF15455

Diagnosis – Differs from other *Steccherinum* species by the coriaceous basidiomata with cream, hydnoid hymenial surface with long aculei, 2–5 per mm, monomitic hyphal system with clamped generative hyphae and broadly ellipsoid to ellipsoid basidiospores measuring $4-4.3 \times 2.5-3 \mu m$.

Etymology – *longiaculeiferum* (Lat.): referring to the hymenophore with long aculei of the type specimen.

Type – China, Yunnan Province, Qujing, Qilin District, Cuishan Forest Park, GPS coordinates 25°32' N, 103°42' E, altitude 2250 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 5 November 2022, CLZhao 26243 (SWFC, holotype).

Figure 92 – Basidiomata of *Steccherinum longiaculeiferum* (holotype). Scale bars: a = 1 cm, b = 2 mm.

Figure 93 – Microscopic structures of *Steccherinum longiaculeiferum* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c A section of hymenium. Scale bars: $a = 5 \mu m$, $b-c = 10 \mu m$.

Description – Basidiomata annual, resupinate, adnate, coriaceous, without odor or taste when fresh, becoming hard coriaceous upon drying, up to 5 cm long, 3 cm wide, up to 2 mm thick. Hymenial surface hydnoid, with long aculei, 2–5 per mm, up to 2.5 mm long, slightly cream when fresh, turning to cream upon drying. Sterile margin white, thinning out, up to 2 mm wide.

Hyphal system dimitic, generative hyphae with clamp connections, colorless, thin to thickwalled, branched, interwoven, more or less loosely covered by numerous crystals, 3–5 μ m in diameter; Skeletal hyphae colorless, thick-walled, 4–5.5 μ m diameter; all hyphae IKI–, CB–, tissues unchanged in KOH. Subhymenium indistinct, densely covered by numerous crystals. Cystidia and cystidioles absent. Basidia clavate, slightly sinuous, with 4 sterigmata and a basal clamp connection, 16.5–23.5 × 4.5–5.5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores broadly ellipsoid to ellipsoid, thin-walled, colorless, smooth, IKI–, CB–, (3.8–)4–4.3(–4.5) × 2.5–3 μ m, L = 4.16 μ m, W = 2.83 μ m, Q = 1.45–1.51 (n = 60/2).

Material examined (paratype) – China, Yunnan Province, Qujing, Qilin District, Cuishan Forest Park, GPS coordinates 25°32' N, 103°42' E, altitude 2250 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 5 November 2022, CLZhao 26290 (SWFC).

Notes – The new species *Steccherinum longiaculeiferum* is grouped within *Steccherinum* based on the ITS, nLSU, mtSSU, RPB1, RPB2 and TEF1 data (Fig. 17) and is identified as a sister to *S. bourdotii* Saliba & A. David. However, *S. bourdotii* can be distinguished from *S. longiaculeiferum* by its effuse-reflexed basidiomata with the pale ochraceous hymenial surface, larger basidiospores $(4.5-5.5 \times 3-4.5 \mu m)$ and presence encrusted cystidia (Bernicchia & Gorjón 2010).

Steccherinum longiaculeiferum shares a hydnoid hymenial surface with *S. oreophilum* Lindsey & Gilb. and *S. subcrinale* (Peck) Ryvarden. However, *S. oreophilum* differs from *S. longiaculeiferum* by its effuse-reflexed basidiomata and white hymenial surface, along with larger basidiospores $(5-6.5 \times 3-3.2 \ \mu\text{m})$ and presence encrusted cystidia (Bernicchia & Gorjón 2010); *S. subcrinale* can be distinguished from *S. longiaculeiferum* with its ochraceous to isabelline hymenial surface, generative hyphae with simple septa, and smaller basidiospores $(3-3.5 \times 2-2.5 \ \mu\text{m})$, Bernicchia & Gorjón 2010).

Steccherinum longiaculeiferum is similar to S. fragile, S. ochraceum and S. subtropicum, sharing ellipsoid basidiospores. However, S. fragile differs from S. longiaculeiferum by its poroid hymenial surface, and smaller basidiospores ($2.8-3.1 \times 2.1-2.2 \mu m$, Liu & Dai 2021); S. ochraceum differentiates from S. longiaculeiferum by its ochraceous hymenial surface, smaller basidiospores ($3-3.5 \times 2-2.5 \mu m$) and presence encrusted cystidia (Bernicchia & Gorjón 2010); S. subtropicum can be distinguished from S. longiaculeiferum in its effuse-reflexed basidiomata and pink hymenial surface, shorter basidiospores ($2.8-3.4 \times 2-2.7 \mu m$) and presence encrusted cystidia (Dong et al. 2023b).

Steccherinum weishanense J.H. Dong & C.L. Zhao, sp. nov.

Figs 94, 95

Index Fungorum number: IF850349; Facesoffungi number: FoF15456

Diagnosis – Differs from other *Steccherinum* species by the coriaceous basidiomata with cream, odontioid hymenial surface with subulate aculei, 7–10 per mm, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $4-4.8 \times 2.5-3.3 \mu m$.

Etymology – weishanense (Lat.): referring to the locality (weishan) of the type specimen.

Type – China, Yunnan Province, Dali, Weishan County, Qinghua Town, Green Peacock Reserve, GPS coordinates 25°01' N, 100°11' E, altitude 1500m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 18 October 2022, CLZhao 24911 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, coriaceous, without odor or taste when fresh, becoming hard coriaceous upon drying, up to 10 cm long, 2 cm wide, up to 1 mm thick. Hymenial surface odontioid, with subulate aculei, 7–10 per mm, up to 0.3 mm long, white to cream when fresh, turning to cream to buff upon drying. Sterile margin cream, thinning out, up to 1 mm wide.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin to thick-walled, branched, interwoven, 3–5 μ m in diameter, IKI–, CB–, tissues unchanged in KOH. Cystidia of two types: (1) clavate, colorless, thin-walled, smooth, 26.5–66 × 5–8.5 μ m; (2) encrusted, colorless, thick-walled, strongly encrusted in the obtuse apex, 28.5–55 × 9.5–14 μ m; cystidioles absent. Basidia subclavate, slightly sinuous, with 4 sterigmata and a basal clamp connection, 11–15 × 4–6 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores ellipsoid, thin-walled, colorless, smooth, IKI–, CB–, (3.8–)4–4.8(–5) × (2.3–)2.5–3.3(–3.5) μ m, L = 4.29 μ m, W = 2.92 μ m, Q = 1.47 (n = 30/1).

Notes – In this study, the new species *Steccherinum weishanense* is classified within *Steccherinum* based on the ITS, nLSU, mtSSU, RPB1, RPB2 and TEF1 data (Fig. 17) forming a monophyletic lineage.

Steccherinum weishanense shares similarities with S. fragile, S. juniperi, S. ochraceum, and S. robustius (J. Erikss. & S. Lundell) J. Erikss. However, S. fragile differs from S. weishanense by its poroid hymenial surface, and smaller basidiospores $(2.8-3.1 \times 2.1-2.2 \ \mu\text{m})$, Liu & Dai 2021); S. juniperi can be distinguished from S. weishanense by its poroid hymenial surface, dimitic hyphal system, narrower basidia $(10-15 \times 3-4 \ \mu\text{m})$ and shorter basidiospores $(3-4 \times 2-3 \ \mu\text{m})$, Liu et al. 2023d); S. ochraceum differentiates from S. weishanense in its ochraceous hymenial surface, dimitic hyphal system and smaller basidiospores $(3-3.5 \times 2-2.5 \ \mu\text{m})$, Bernicchia & Gorjón 2010); S. robustius differs from S. weishanense by its fimbriate sterile margin, dimitic hyphal system, and longer basidia $(20-30 \times 4-5 \ \mu\text{m})$, Bernicchia & Gorjón 2010).

Steccherinum weishanense is similar to S. subtropicum in sharing the ellipsoid basidiospores. Steccherinum subtropicum is distinguished from S. weishanense by its effuse-reflexed basidiomata and pink hymenial surface, dimitic hyphal system and shorter basidiospores (2.8–3.4 \times 2–2.7 μ m, Dong et al. 2023b).

Figure 94 – Basidiomata of *Steccherinum weishanense* (holotype). Scale bars: a = 1 cm, b = 1 mm.

Russulales Kreisel ex P.M. Kirk, P.F. Cannon & J.C. David

Auriscalpiaceae Maas Geest.

Index Fungorum number: IF80506; Facesoffungi number: FoF15457 Type genus – *Auriscalpium* Gray

Artomyces Jülich

Index Fungorum number: IF17104; Facesoffungi number: FoF15458

Type species – Artomyces pyxidatus (Pers.) Jülich

Notes – Jülich (1982) introduced the genus *Artomyces* and typified it with *A. pyxidatus* (Pers.) Jülich, proposing *Artomyces* as a distinct genus separate from *Clavicorona* Doty. Lickey et al. (2003) conducted a comprehensive phylogenetic and taxonomic study of *Artomyces*, accepting 15 species within the genus based on a combination of morphology, nuclear ribosomal internal transcribed spacer DNA (nrITS DNA) sequences, and mating studies. In addition, they described seven new species. Furthermore, Kneal & Smith (2015) described a new species *A. nothofagi* R.J. Kneal & M.E. Sm., based on morphology and phylogeny. In this study, we propose two new species, *A. niveus* and *A. yunnanensis*, based on morphological and molecular systematics evidence.

Figure 95 – Microscopic structures of *Steccherinum weishanense* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Clavate cystidia. d Encrusted cystidia. e A section of hymenium. Scale bars: $a = 5 \mu m$, $b-e = 10 \mu m$.

Artomyces niveus J.H. Dong & C.L. Zhao, sp. nov.

Figs 96, 97

Index Fungorum number: IF850350; Facesoffungi number: FoF15459

Diagnosis – Differs from other *Artomyces* species by the gregarious basidiomata with niveous, coronate-cristate to cuspidate apices, monomitic hyphal system with clamped generative hyphae and broadly ellipsoid basidiospores measuring $3-3.8 \times 2.5-3.3 \mu m$.

Etymology – niveus (Lat.): referring to the niveous hymenophore of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 9 June 2020, CLZhao 19094 (SWFC).

Description – Basidiomata lignicolous, gregarious, 30-45 mm tall × 15-30 mm wide, frequently branched and coronate, forming cristate branches at the apices; apices coronate-cristate to cuspidate; without odor or taste, soft when fresh, becoming brittle upon drying, usually lacking obvious basal mycelium. Niveous when fresh, turning to caramel brown upon drying.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, branched, 2.5–4 μ m diameter; IKI–, CB–, tissues unchanged in KOH. Gloeoplerous hyphae, common in the trama, aseptate, colorless, thin-walled, 2.5–9.5 μ m diameter, terminating in the hymenium as gloeocystidia. Gloeocystidia common, clavate, flexuous, 31.5–60 × 6–11.5 μ m; cystidioles absent. Basidia clavate, slightly sinuous, thin-walled, with 4 sterigmata and a basal clamp connection, 13–17.5 × 3–5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores broadly ellipsoid, thin-walled, colorless, smooth, amyloid, CB–, 3–3.8(–4) × 2.5–3.3(–3.5) μ m, L = 3.38 μ m, W = 2.90 μ m, Q = 1.15–1.21 (n = 90/3).

Figure 96 – Basidiomata of Artomyces niveus (holotype). Scale bars: a–d = 1 cm, e = 2 mm.

Figure 97 – Microscopic structures of *Artomyces niveus* (drawn from the holotype). a Generative hypha. b Basidiospores. c Gloeocystidia. d Gloeoplerous hyphae. e Basidia and basidioles. Scale bars: a, $c-e = 10 \mu m$, $b = 5 \mu m$.

Material examined (paratypes) – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 3 August 2019, CLZhao 18346; 9 June 2020, CLZhao 18996 (SWFC).

Notes – Based on the ITS data (Fig. 18), the new species Artomyces niveus is placed within Artomyces. and identified as the sister species to A. turgidus (Lév.) Jülich. However, A. turgidus

can be distinguished from A. *niveus* by its longer basidiospores $(4-5 \times 3-3.5 \mu m)$, Lickey et al. 2003).

Artomyces niveus resembles A. novae-zelandiae Lickey and A. tasmaniensis Lickey in having the broadly ellipsoid basidiospores. However, A. novae-zelandiae differs from A. niveus by its larger basidiospores (4.6–6 × 3.6–4.8 μ m, Lickey et al. 2003); A. tasmaniensis differentiates from A. niveus in its longer basidia (22–32 × 4–5.2 μ m, Lickey et al. 2003).

Artomyces yunnanensis J.H. Dong & C.L. Zhao, sp. nov.

Figs 98, 99

Index Fungorum number: IF850351; Facesoffungi number: FoF15460

Diagnosis – Differs from other *Artomyces* species by the scattered to gregarious basidiomata with greyish brown to dark brown, coronate-cristate to cuspidate apices, monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring $5-6 \times 3.7-4.7 \,\mu\text{m}$.

Figure 98 – Basidiomata of *Artomyces yunnanensis* (holotype). Scale bars: a = 1 cm, b = 5 mm.

Figure 99 – Microscopic structures of *Artomyces yunnanensis* (drawn from the holotype). a Basidiospores. b Generative hyphae. c Gloeocystidia. d Gloeoplerous hyphae. e Basidia and basidioles. Scale bars: $a = 5 \mu m$, $b-e = 10 \mu m$.

Etymology – yunnanensis (Lat.): referring to the locality (Yunnan Province) of the type specimen.

Type – China, Yunnan Province, Chuxiong, Zixishan National Forestry Park, GPS coordinates 25°01' N, 101°24' E, altitude 2500 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 1 July 2018, CLZhao 7118 (SWFC, holotype).

Description – Basidiomata lignicolous, scattered to gregarious, $20-35 \text{ mm tall} \times 10-20 \text{ mm}$ wide, frequently branched and coronate, forming cristate branches at the apices; apices coronatecristate to cuspidate; without odor or taste, soft when fresh, becoming brittle upon drying, usually lacking obvious basal mycelium. Slightly cream when fresh, turning to greyish brown to dark brown upon drying.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, branched, 2.5–4.5 μ m diameter; IKI–, CB–, tissues unchanged in KOH. Gloeoplerous hyphae, common in the trama, aseptate, colorless, thin-walled, 4.5–13 μ m diameter, terminating in the hymenium as gloeocystidia. Gloeocystidia common, mostly cylindrical to clavate, flexuous, 70–85.5 × 10–17 μ m; cystidioles absent. Basidia clavate, slightly sinuous, thin-walled, with 4

sterigmata and a basal clamp connection, sometimes with a guttula, $20.5-26.5 \times 5.7-7 \mu m$; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores ellipsoid, thin-walled, colorless, smooth, sometimes with a guttula, amyloid, CB-, $5-6(-6.5) \times 3.7-4.7(-5) \mu m$, L = 5.43 μm , W = 4.26 μm , Q = 1.27-1.31 (n = 60/2).

Material examined (paratype) – China, Yunnan Province, Chuxiong, Zixishan National Forestry Park, GPS coordinates 25°01' N, 101°24' E, altitude 2500 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 1 July 2018, CLZhao 7052 (SWFC).

Notes – In this study, based on the ITS data (Fig. 18), the new species *Artomyces yunnanensis* is classified within *Artomyces*, and found to be the sister species to *A. carolinensis* Lickey. However, *A. carolinensis* can be distinguished from *A. yunnanensis* by its narrower basidia (14–20 \times 4–4.8 µm) and smaller basidiospores (3.6–4.4 \times 2.8–3.4 µm, Lickey et al. 2003).

Artomyces yunnanensis shares similarities with A. adrienneae Lickey and A. colensoi (Berk.) Jülich in sharing the ellipsoid basidiospores. However, A. adrienneae differs from A. yunnanensis by its narrower basidiospores (4.2–5.2 × 2.8–3.6 μ m, Lickey et al. 2003); A. colensoi can be distinguished from A. yunnanensis by its narrower basidia (20–28 × 3.6–5.2 μ m) and smaller basidiospores (3.6–4.4 × 2.4–3 μ m, Lickey et al. 2003).

Peniophoraceae Lotsy

Index Fungorum number: IF81123; Facesoffungi number: FoF15461 Type genus – *Peniophora* Cooke

Scytinostroma Donk

Index Fungorum number: IF18530; Facesoffungi number: FoF15462

Type species – Scytinostroma portentosum (Berk. & M.A. Curtis) Donk

Notes - The genus Scytinostroma Donk was established by Donk (1956) and typified by S. portentosum (Berk. & M.A. Curtis) Donk. Phylogenetic research on this genus revealed that five species of Scytinostroma; S. galactinum (Fr.) Donk, S. jacksonii Boidin, S. ochroleucum Donk, S. odoratum (Fr.) Donk and S. portentosum (type species), occurred on five distinct branches that were distantly separated in Peniophoraceae (Larsson & Larsson 2003, Miller et al. 2006). Leal-Dutra et al. (2018) constructed a phylogenetic tree to focus on the relationships among the species of Scytinostroma and proposed the new genus Baltazaria Leal-Dutra, Dentinger & G.W. Griff. To accommodate four species: S. galactinum, S. neogalactinum Boidin & Lang., S. eurasiaticogalactinum Boidin & Lanq. and Parapterulicium octopodites Corner. Based on a morphology study, Stalpers et al. (2021) transferred two species of Michenera Berk. & M.A. to Scytinostroma and treated the former genus as a synonym of the latter. Li et al. (2023b) conducted phylogenetic analyses of Peniophoraceae based on concatenating ITS1-5.8S-ITS2-nrLSU sequence data, with a focus on samples of Scytinostroma s.s. worldwide, and introduced four new species S. beijingensis, S. boidinii, S. subduriusculum and S. subrenisporum. In this study, one new species of Scytinostroma is described from China based on morphological characteristics and phylogenetic analyses inferred from ITS+nLSU sequences.

Scytinostroma daweishanense J.H. Dong & C.L. Zhao, sp. nov. Figs 100–102

Index Fungorum number: IF850352; Facesoffungi number: FoF15463

Diagnosis – Differs from other *Scytinostroma* species by the effused-reflexed, coriaceous basidiomata with slightly orange-yellow, smooth hymenial surface, dimitic hyphal system with septate generative hyphae and subglobose to globose basidiospores measuring $14.5-17 \times 13.5-17$ µm.

Etymology - daweishanense (Lat.): referring to the locality (Daweishan) of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 1 August 2019, CLZhao 17926 (SWFC, holotype).

Figure 100 – Basidiomata of *Scytinostroma daweishanense* (holotype). Scale bars: a = 1 cm, b = 2 mm.

Description – Basidiomata annual, resupinate, discoid, effused-reflexed, adnate with slightly detached margins, without odor or taste, soft coriaceous when fresh, becoming coriaceous upon drying, to 1-2.5 cm long, up to 1 mm thick. Hymenial surface smooth, cuticolor to cream to lightly orange when fresh, turning to slightly orange-yellow upon drying. Sterile margin cream to lightly orange, abrupt, up to 0.5 mm wide.

Hyphal system dimitic, generative hyphae with simple septa, colorless, thin-walled, moderately branched, composed of loosely interwoven, 2–3 μ m in diameter, IKI–, CB–; skeletal hyphae dominant, aseptate, colorless, thick-walled, frequently branched, interwoven, 2.5–4 μ m diameter, IKI+, CB+; tissues unchanged in KOH. Gloeocystidia numerous, embedded, cylindrical to subclavate, with a rounded apex, simple septum at base, thick-walled, empty or contents

concentrated in upper part, usually with several adventitious septa, $150-200 \times 12-16 \mu m$; cystidioles absent. Basidia clavate, elongate, somewhat sinuous, sometimes with a few guttulae, thin-walled, with 4 sterigmata and a basal simple septum, $100-110 \times 17-20 \mu m$; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores subglobose to globose with a distinct apiculus, thin to slightly thick-walled, colorless, smooth, sometimes with a guttula, IKI–, CB+, $(13.5-)14.5-17(-18) \times (12.5-)13.5-17(-17.5) \mu m$, L = $15.87 \mu m$, W = $15.53 \mu m$, Q = 1.02 (n = 30/1).

Notes – Based on the ITS+nLSU data (Fig. 19), the new species *Scytinostroma daweishanense* is grouped into *Scytinostroma*, and forms a cluster with *S. artocreas* (Berk. & M.A. Curtis) K.H. Larss. and *S. incrustatum* (S.H. He, S.L. Liu & Nakasone) K.H. Larss. However, *S. artocreas* can be differentiated from *S. daweishanense* by its smaller basidia (70–100 × 13–15 μ m, Lemke 1964); *S. incrustatum* can be distinguished from *S. daweishanense* by its tuberculate or undulating hymenial surface, along with both longer basidia (170–230 × 18–26 μ m) and larger basidiospores (17–22 × 16–21 μ m, Liu et al. 2018).

Figure 101 – Microscopic structures of *Scytinostroma daweishanense* (holotype) a Basidia and basidioles. b Basidiospores. c Hyphae. d Gloeocystidia. Scale bars: $a-d = 20 \mu m$, $10 \times 100 \text{ Oil}$.

Trechisporales K.H. Larss.

Hydnodontaceae Jülich

Index Fungorum number: IF81729; Facesoffungi number: FoF15464 Type genus – *Hydnodon* Banker

Fibrodontia Parmasto

Index Fungorum number: IF17584; Facesoffungi number: FoF15465 Type species – *Fibrodontia gossypina* Parmasto

Notes – The genus *Fibrodontia* Parmasto was established by Parmasto (1968) and designated with *F. gossypina* Parmasto as its type species. To date, eight species are accepted in *Fibrodontia* (Liu et al. 2022c). Here, we describe, one additional species of *Fibrodontia* from China based on

morphological characteristics and phylogenetic analyses inferred from ITS, nLSU, mtSSU, RPB2 and TEF1 DNA sequences.

Figure 102 – Microscopic structures of *Scytinostroma daweishanense* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Gloeocystidia. d A section of hymenium. Scale bars: $a - d = 10 \mu m$.

Fibrodontia bambusicola J.H. Dong & C.L. Zhao, sp. nov.

Figs 103, 104

Index Fungorum number: IF850353; Facesoffungi number: FoF15466

Diagnosis – Differs from other *Fibrodontia* species by the pruinose basidiomata with pinkish buff to olivaceous buff, smooth hymenial surface, dimitic hyphal system with clamped generative hyphae and broadly ellipsoid to subglobose basidiospores measuring $5.3-6.7 \times 4-6 \mu m$.

Etymology - bambusicola (Lat.): referring to the bamboo substrate of the type specimen.

Type – China, Yunnan Province, Wenshan, Xichou County, Xiaoqiaogou National Nature Reserve, GPS coordinates 23°21' N, 104°4' E, altitude 2990 m asl., on the dead bamboo, leg. C.L. Zhao, 16 January 2019, CLZhao 11261 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, very hard to separate from substrate, without odor or taste, soft pruinose when fresh, becoming pruinose upon drying, up to 4.5 cm long, 2.5 cm wide, 20–50 μ m thick. Hymenial surface smooth, slightly buff when fresh, turning to pinkish buff to olivaceous buff upon drying. Sterile margin narrow, slightly buff, thinning out, up to 0.5 mm wide.

Figure 103 – Basidiomata of *Fibrodontia bambusicola* (holotype). Scale bars: a = 2 cm, b = 2 mm.

Hyphal system dimitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, interwoven $2-3 \mu m$ in diameter; skeletal hyphae, thick-walled, colorless, 2.5-

4 µm diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia and cystidioles absent. Basidia cylindrical, slightly sinuous, with 4 sterigmata and a basal clamp connection, $24-29 \times 4-6$ µm. Basidiospores broadly ellipsoid to subglobose, colorless, thin-walled, smooth, cyanophilous, IKI–, $(5-)5.3-6.7(-7) \times 4-6$ µm, L = 6.13 µm, W = 4.93 µm, Q = 1.21-1.25 (n = 60/2).

Material examined (paratype) – China, Yunnan Province, Wenshan, Xichou County, Xiaoqiaogou, National Nature Reserve, GPS coordinates 23°21' N, 104°4' E, altitude 2990 m asl., on the dead bamboo, leg. C.L. Zhao, 16 January 2019, CLZhao 11201 (SWFC).

Figure 104 – Microscopic structures of *Fibrodontia bambusicola* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c A section of hymenium. Scale bars: $a-c = 10 \mu m$.

Notes – Based on the ITS, nLSU, mtSSU, RPB2 and TEF1 data (Fig. 20), the new species *Fibrodontia bambusicola* is classified within *Fibrodontia*, forming a sister relationship with *F. brevidens* (Pat.) Hjortstam & Ryvarden, and clustering with *F. austrosinensis* S.L. Liu, S.H. He & L.W. Zhou, *F. brevidens* and *F. subaustrosinensis* S.L. Liu, S.H. He & L.W. Zhou. However, *F. austrosinensis* can be distinguished from *F. bambusicola* by its grandinioid to odontioid hymenial surface, both shorter basidia (13–16 × 4.5–5.5 µm) and smaller basidiospores (4.2–5.2 × 3.5–4.5 µm, Liu et al. 2021); *F. brevidens* can be differentiated from *F. bambusicola* by its grandinioid to odontioid hymenial surface, and shorter basidiospores (4.5–5 × 3.5–4.5 µm, Ryvarden et al. 2005); *F. subaustrosinensis* can be distinguished from *F. bambusicola* by its grandinioid hymenial surface, and ellipsoid to ovoid basidiospores (4.8–6 × 4–5 µm, Liu et al. 2022c).

Subulicystidium Parmasto

Index Fungorum number: IF18619; Facesoffungi number: FoF15467

Type species - Subulicystidium longisporum (Pat.) Parmasto

Notes – The genus *Subulicystidium* Parmasto was established by Parmasto (1968) and typified by *S. longisporum* Parmasto. Molecular studies by Hibbett & Binder (2002) and Larsson et al. (2004) revealed that *Subulicystidium* was closely related to *Tubulicium vermiferum* (Bourdot) Oberw. and both were placed within the trechisporoid clade, next to other *Trechispora* species. In this study, one new species, *S. yunnanense* is reported based on morphological and phylogenetic evidence, using ITS, nLSU, mtSSU, RPB2 and TEF1 data (Fig. 20), bringing the total number of described *Subulicystidium* species to 13 (Ordynets et al. 2018, Liu et al. 2019).

Subulicystidium yunnanense J.H. Dong & C.L. Zhao, sp. nov. Index Fungorum number: IF850354; Facesoffungi number: FoF15468 Figs 105, 106

Figure 105 – Basidiomata of *Subulicystidium yunnanense* (holotype). Scale bars: a = 1 cm, b = 2 mm.

Diagnosis – Differs from other *Subulicystidium* species by the membranous basidiomata with white to cream, smooth hymenial surface, monomitic hyphal system with clamped generative hyphae, numerous protruding cystidia and vermicular to sigmoid basidiospores measuring 13.5–16 \times 2–2.5 µm.

Etymology - yunnanense (Lat.): referring to the locality (Yunnan Province) of the type specimen.

Type – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 22°51' N, 103°41' E, altitude 2360 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 9 June 2020, CLZhao 18950 (SWFC, holotype).

Description – Basidiomata annual, resupinate, adnate, very thin, loosely attached to the substrates, without odor or taste, membranous when fresh, becoming coriaceous upon drying, up to 5 cm long, 50–150 μ m thick. Hymenial surface smooth, white when fresh, turning to white to cream upon drying. Sterile margin white to cream, abrupt, up to 0.5 mm wide.

Figure 106 – Microscopic structures of *Subulicystidium yunnanense* (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Subulate cystidia. d A section of hymenium. Scale bars: $a-d = 10 \mu m$.

Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, frequently branched, loosely interwoven, 2–3.5 μ m in diameter; IKI–, CB–, tissues unchanged in KOH. Cystidia abundant, subulate, projecting beyond hymenium, colorless, thin to thick-walled and regularly covered with rectangular crystals except at the apex, 65–73 × 4.5–5.5 μ m; cystidioles absent. Basidia subclavate, with 4 sterigmata and a basal clamp connection, 13–20.5 × 5–6.5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller. Basidiospores vermicular to sigmoid, colorless, thin-walled, smooth, IKI–, CB–, 13.5–16(–16.5) × 2–2.5(–2.8) μ m, L = 14.47 μ m, W = 2.30 μ m, Q = 6.22–6.28 (n = 90/3).

Material examined (paratypes) – China, Yunnan Province, Zhaotong, Yiliang County, Luozehe Town, Lijiaping Village, GPS coordinates 27°53' N, 104°10' E, altitude 2000 m asl., on

the fallen branch of angiosperm, leg. C.L. Zhao, 25 August 2022, CLZhao 23687, CLZhao 23944 (SWFC).

Notes – In the present study, based on the ITS, nLSU, mtSSU, RPB2 and TEF1 data (Fig. 20), the new species *Subulicystidium yunnanense* is placed within *Subulicystidium*, and was sister to *S. tropicum* S.H. He & S.L. Liu. However, *S. tropicum* can be distinguished from *S. yunnanense* by its orange grey to greyish-orange hymenial surface, narrower basidia $(12-17 \times 4-5 \mu m)$ and shorter basidiospores $(11-12.5 \times 1.8-2.2 \mu m)$, Liu et al. 2019).

Subulicystidium yunnanense shares similarities with S. boidinii Ordynets, M.M. Striegel & Langer, S. fusisporum Ordynets & K.H. Larss. and S. grandisporum Ordynets & K.H. Larss. in sharing the white hymenial surface. However, S. boidinii differs from S. yunnanense by its shorter basidia (10–12 × 4–5.5 μ m) and basidiospores (5.9–7.2 × 2.8–3.3 μ m, Ordynets et al. 2018); S. fusisporum differs from S. yunnanense by its shorter basidiospores (10.7–12.8 × 2.4–3.4 μ m, Ordynets et al. 2018); S. grandisporum differs from S. yunnanense by its wider basidiospores (10.5–14.5 × 3.3–3.9 μ m, Ordynets et al. 2018).

Species new to China

Along with these new species, we found the following 7 species belonging to Basidiomycota for the first time in China (Fig. 21).

Cabalodontia albofibrillosa (Hjortstam & Ryvarden) Westphalen

Basionym – *Phlebia albofibrillosa* Hjortstam & Ryvarden, Mycotaxon 20(1): 139 (1984) Index Fungorum number: IF836502; Facesoffungi number: FoF15469

Material examined – China, Yunnan Province, Yuxi, Xinping County, Mopanshan National Forestry Park, GPS coordinates 23°56' N, 101°29' E, altitude 2200 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 18 January 2018, CLZhao 6394; Puer, Ailaoshan National Nature Reserve, GPS coordinates 24°29' N, 100°56' E, altitude 2450 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 25 Aguest 2018, CLZhao 8722 (SWFC).

Etheirodon fimbriatum (Pers.) Banker

Basionym – Odontia fimbriata Pers., Observ. mycol. (Lipsiae) 1: 88 (1796)

Index Fungorum number: IF632166; Facesoffungi number: FoF15470

Material examined – China, China, Yunnan Province, Puer, Jingdong County, Ailaoshan Ecological Station, GPS coordinates 24°50' N, 100°94' E, altitude 2000 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 23 August 2018, CLZhao 8399; Dali, Nanjian County, Lingbaoshan, GPS coordinates 24°76' N, 100°50' E, altitude 2500 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 9 January 2019, CLZhao 10069, CLZhao 10114; Kunming, Yeyahu Forest Park, on the fallen branch of angiosperm, leg. C.L. Zhao, 30 September 2019, CLZhao 13977 (SWFC).

Hyphoderma cremeoalbum (Höhn. & Litsch.) Jülich

Basionym – *Corticium cremeoalbum* Höhn. & Litsch., Wiesner Festschrift (Wien): 63 (1908) Index Fungorum number: IF315511; Facesoffungi number: FoF15471

Material examined – China, Yunnan Province, Wenshan, Pingba Town Natoinal Reserve, GPS coordinates 23°24' N, 104°11' E, altitude 1657 m asl., on the fallen branch of angiosperm, leg. C.L. Zhao, 28 July 2019, CLZhao 17007 (SWFC).

Hyphoderma transiens (Bres.) Parmasto

Basionym – *Odontia transiens* Bres., in Torrend, Brotéria, sér. bot. 11(1): 72 (1913) Index Fungorum number: IF836887; Facesoffungi number: FoF15472

Material examined – China, Yunnan Province, Kunming, Xishan District, Haikou Forestry Park, on the fallen branch of angiosperm, 22 April 2017, CLZhao 1261, on the fallen branch of *Populus yunnanensis*, CLZhao 1365; 23 April 2017, CLZhao 1493; Kunming, Yeyahu Forestry Park, on the fallen branch of an angiosperm, 23 June 2017, CLZhao 1606, CLZhao 1667, CLZhao

1719, CLZhao 1768; Wuliangshan Nature Reserve, on the fallen branch of an angiosperm, 6 January 2019, CLZhao 9628 (SWFC).

Mycoacia fuscoatra (Fr.) Donk

Basionym – *Hydnum fuscoatrum* Fr. [as 'fusco-atrum'], Novit. fl. svec. 2: 39 (1814) Index Fungorum number: IF252296; Facesoffungi number: FoF15473

Material examined – China, Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, GPS coordinates 103°30' N, 23°42' E, altitude 1500 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 3 August 2019, CLZhao 18423 (SWFC).

Phanerochaete sanguineocarnosa Floudas & Hibbett

Index Fungorum number: IF811925; Facesoffungi number: FoF15474

Material examined – China, Yunnan Province, Puer, Jingdong County, Wuliangshan National Nature Reserve, GPS coordinates 24°46' N, 100°58' E, altitude 2500 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 6 September 2017, CLZhao 4447, CLZhao 4634, CLZhao 4639, CLZhao 4691 (SWFC)

Steccherinum confragosum Maas Geest. & Lanq.

Index Fungorum number: IF324023; Facesoffungi number: FoF15475

China, Yunnan Province, Puer, Jingdong County, Wuliangshan National Nature Reserve, GPS coordinates 24°46' N, 100°58' E, altitude 2500 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 5 October 2017, CLZhao 4247; 17 October 2017, CLZhao 4297 (SWFC).

DISCUSSION

In recent years, many taxa of wood-inhabiting fungi have been continuously reported and recorded all over the world (Cui et al. 2019, Wijayawardene et al. 2020, Chen et al. 2021, Liu et al. 2022a, b, c, Jayawardena et al. 2023). Over the past ten years, global studies have explored the diversity, ecology and systematics of wood-inhabiting fungi, with variations in focus among the taxa studied (Dai 2012, Hyde et al. 2017a, b, Tibpromma et al. 2017, Hibbett 2016, He et al. 2022, Wijayawardene et al. 2020, Jayawardena et al. 2023). In addition, the diversity of wood-inhabiting fungi in the Yunnan-Guizhou Plateau of China holds great significance. Hence, the present study focuses on the species diversity, taxonomy, molecular systematics, and divergence times of wood-inhabiting fungi in the Yunnan-Guizhou Plateau, Asia.

A great step has been made for the phylogenetic relationships within wood-inhabiting fungi based on the morphology, multi-locus and genomic phylogeny (Hyde et al. 2017a, b, 2018, 2021, Cui et al. 2019, Chen et al. 2021, Liu et al. 2022b, c, Jayawardena et al 2023, Liu et al. 2023a). Molecular studies in Basidiomycota revealed that 599 genera lacked sequence data in public repositories, which implies nearly one third of the genera in Basidiomycota were not included in the molecular systematic studies (He et al. 2019), consequently, there is a need for more multilocus sequences in the future for wood-inhabiting fungi. Thus, in the present study, we have compiled sequence data for wood-inhabiting fungi, containing 128 ITS, 91 nLSU, 83 mtSSU, 27 RPB1, 39 RPB2 and 40 TEF1, which belong to the taxa as six orders, 17 families, 22 genera. Our focus has been intensified on exploring the molecular systematics and divergence times of wood-inhabiting fungi in the Yunnan-Guizhou Plateau. Additionally, we have delved into their topological relationships through the analysis of phylogenetic trees.

The placement of two genera, *Aphanobasidium* Jülich and *Radulomyces*, was previously located in Pterulaceae based on phylogenetic reconstructions of corticioid taxa (Larsson et al. 2004, Larsson 2007a). *Radulomyces* belonged to the Pterulaceae (Agaricales) and was most closely related to *Radulotubus* Y.C. Dai, S.H. He & C.L. Zhao and *Aphanobasidium* (Zhao et al. 2016a). These three genera formed a strongly supported clade and were sisters to the *Pterula-Deflexula-Pterulicium-Merulicium-Coronicium* clade based on the demonstrated sequence analyses of the ITS+nLSU data (Zhao et al. 2016a, Wang et al. 2018b). Radulomycetaceae was characterized by

the combination of resupinate basidiomes, a monomitic hyphal system, and the absence of cystidia, in which the phylogenetic analyses strongly support the segregation of Radulomycetaceae from Pterulaceae (Leal-Dutra et al. 2020). Thus, Leal-Dutra et al. (2020) proposed the introduction of a new family for these three genera (i.e. *Aphanobasidium* and *Radulomyces*, *Radulotubus*) instead of placing them in Pterulaceae, as they were distinct from nearly all the other members of Pterulaceae clearly by morphology and phylogeny. In this study, based on the ITS+nLSU data (Fig. 3) and morphological characteristics, three new species *Radulomyces hydnoides*, *R. yunnanensis* and *R. zixishanensis* are nested within *Radulomyces*. In addition, these three genera (i.e. *Aphanobasidium* and *Radulomyces*, *Radulotubus*) are clustered together within Radulomycetaceae, and this finding is consistent with the results of previous studies (Leal-Dutra et al. 2020).

Corticium is the type genus of Corticiaceae and has a checkered past as a dumping ground for basidiomycetes with simple corticioid basidiomata (Donk 1963). With the emergence of molecular data, the genus has become more narrowly defined, with many species transferred to other genera, families, and orders. This study confirms that *Corticium* constitutes a monophyletic genus for species characterized by conspicuous wall thickening at the bases of basidia and basidioles, flexuous basidia developing from bladder-like basidioles, and constantly bearing dendrohyphidia and clamped hyphae (Ghobad-Nejhad et al. 2021). Besides, the mycologists recognized 14 species in *Corticium*, of which seven species were confirmed phylogenetically. In this study, based on ITS+nLSU phylogenetic analysis (Fig. 4), we confirm that *Corticium* is a monophyletic genus nested within the family Corticiaceae, which is similar to the work of Ghobad-Nejhad et al. (2021).

Due to the lack of sequences for a part of the fungal taxa, clear differentiation among many genera in this group using molecular data was challenging, hence, a broad concept of some wood-inhabiting fungal genera were accepted, such as *Hyphodontia* s.l. (Yurchenko & Wu 2016, Riebesehl & Langer 2017, Riebesehl et al. 2019). Three genera, formerly belonged to *Hyphodontia* sensu lato, viz. *Fasciodontia, Lyomyces* and *Xylodon*, formed a strongly supported clade, which occupied an independent position at the family level in Hymenochaetales (Wang et al. 2021b). *Xylodon* was previously synonymous with *Schizopora*, and the former family name Schizoporaceae, typified by *Schizopora*, was adopted to accommodate *Fasciodontia, Lyomyces* and *Xylodon* (Wang et al. 2021b). In the present study, this phylogenetic arrangement is confirmed by the current phylogenies (Fig. 8) and remains consistent with previous studies (Wang et al. 2021b, 2023, Guan et al. 2023).

Delineating wood-inhabiting fungal species often requires the application of genealogical concordance and phylogenetic species recognition methods (Taylor et al. 2000, Hibbett & Taylor 2013, Hyde et al. 2017b, Cui et al. 2019, Chen et al. 2021, Hyde et al. 2021, Liu et al. 2022b). Justo et al. (2017) performed a revised family level classification of Polyporales. In their phylogenetic analysis, the families Dacryobolaceae Jülich, Fomitopsidaceae Jülich, Laetiporaceae Jülich and Sparassidaceae Herter were assigned, with Phanerochaetaceae Jülich was regarded as a synonym of Laetiporaceae, however, the Laetiporaceae clade did not receive significant support in the phylogenetic analysis (Justo et al. 2017). In this study, based on phylogenetic analysis (Fig. 16), the classification of Fomitopsidaceae and Sparassidaceae is consistent with previous studies (Justo et al. 2017, Liu et al. 2022b).

Hypochnicium could not be assigned to any recognized family of the Polyporales, and its classification at the family level was treated as incertae sedis (Justo et al. 2017, He et al. 2019, Wijayawardene et al. 2020). Based on the analysis of the ITS region of rDNA, Paulus et al. (2007) proposed that *Hypochnicium* forms a monophyletic group, and *Gyrophanopsis* is a synonymy of *Hypochnicium*. Subsequently, Telleria et al. (2010a) detected two major clades within *Hypochnicium* through phylogenetic analysis in which the morphological character of basidiospores played a crucial role in this classification, with one clade containing taxa with smooth basidiospores, and another one with ornamented basidiospores. Justo et al. (2017) demonstrated *Hypochnicium* constituted a polyphyletic lineage within the "residual clade" of Polyporales. Based on molecular phylogenetic analyses using ITS, nLSU and rpb1 genes, the genus was divided into two distinct clades. The "hypochnicium clade", comprises the type species *H. bombycinum* and

H. karstenii, producing the smooth basidiospores. In contrast another clade contains *H. punctulatum* and *H. wakefieldiae* characterized by ornamented basidiospores, and is situated in Podoscyphaceae. Maekawa et al. (2023) conducted molecular phylogenetic analyses, revealing that *Hypochnicium* s. lat. was clearly polyphyletic. In this study, phylogenetic analysis based on ITS, LSU, mtSSU, RPB1 and TEF1 data (Fig. 13), clearly demonstrates the polyphyletic nature of *Hypochnicium*. These findings are consistent with latest research by Justo et al. (2017) and Maekawa et al. (2023), but contradict the concept of "a monophyletic group" proposed by Paulus et al. (2007).

Hypochnicium s. str. comprised a limited set of species characterized by smooth basidiospores, whereas Neohypochnicium encompassed both species with smooth basidiospores and those with ornamented basidiospores (Maekawa et al. 2023). Supported by molecular systematics, it was possible to identify the genus to which a hypochnicioid species with smooth basidiospores belongs within the framework of Hypochnicium (Maekawa et al. 2023). Hence, 14 native species of Hypochnicium were transferred to Neohypochnicium, while hypochnicioid species with smooth basidiospores lacking molecular data were retained in *Hypochnicium* (Maekawa et al. 2023). In our present study, based on ITS, LSU, mtSSU, RPB1 and TEF1 phylogenetic analysis (Fig. 16), we proposed that Hypochnicium s. str. closely groups together with the genera Bulbillomyces and Gyrophanopsis, forming a well-supported lineage. Moreover, this clade is closely related to Hyphodermataceae and Steccherinaceae. Morphologically the three genera share the resupinate basidiomata, smooth, tuberculate to odontioid hymenial surface, monomitic hyphal system, clavate to suburniform basidia, ellipsoid, subglobose to globose basidiospores. In addition, the phylogenetic analysis (Fig. 16) revealed that Neohypochnicium groups with the family Podoscyphaceae, forming a monophyletic lineage. Morphologically, Podoscyphaceae can be distinguished from Neohypochnicium by its poroid hymenial surface (Patouillard 1900). Hence, based on both morphological characteristics and phylogenetic evidence, two new families Hypochniciaceae and Neohypochniciaceae, are proposed.

Divergence time is estimated with ITS+nLSU+mtSSU+RPB1+RPB2+TEF1 sequences representing all main lineages in Polyporales (Fig. 15). The time ranges for Basidiomycota, with the phylum originating ca. 530 Mya, the subphyla 406–490 Mya, most classes 245–393 Mya and orders 120–290 Mya were inferred by Zhao et al. (2017b). However, the time range of most families in Polyporales was 62–138 Mya. In our study, the divergence time of two new families was 200.03 Mya (PP = 1) which supports a recent study of ranking a family with divergence time estimates (He et al. 2019, Wu et al. 2020).

Binder et al. (2005) showed that Climacocystis Kotl. and Pouzar nested inside the antrodia clade, however, other analyses indicated that *Climacocystis* within the residual polyporoid clade (Miettinen et al. 2012, Binder et al. 2013, Justo et al. 2017). Justo et al. (2017) indicated that Climacocystis and Diplomitoporus Domanski grouped with high support within the residual clade and could not be assigned to any recognized family in the Polyporales. Previous studies may have lacked sufficient morphological features and molecular data to determine the family affiliation of Climacocystis and Diplomitoporus. Consequently, their classifications at the family level were treated as incertae sedis (He et al. 2019). However, based on the multiple genes phylogenetic analysis, it was revealed that *Climacocystis* and *Diplomitoporus* grouped together with high support within the residual clade, which has unique morphological characters and forms a well-supported clade (Liu et al. 2023a). Phylogenetically, the family Climacocystaceae B.K. Cui, Shun Liu & Y.C. Dai was closely related to Hyphodermataceae, Meripilaceae, Podoscyphaceae, and Steccherinaceae. In our current study, phylogenetic analysis based on ITS, LSU, mtSSU, RPB1 and TEF1 data (Fig. 16), reveals that Climacocystaceae is closely related to Hypochniciaceae, Hyphodermataceae, and Steccherinaceae, in which the topology is different from the previous study (Liu et al. 2023a). This different results between both studies may be due to the composition of datasets, samples, supported values and gene fragments used in the two studies. Hence, it is necessary to carry out more in-depth phylogenetic analysis for wood-inhabiting fungi with more samples and sequences worldwide.

Justo et al. (2017) revealed that *Tyromyces merulinus* was a sister to Incrustoporiaceae, and this species could not be assigned to any family within Polyporales. Subsequently, *Gloeoporellus* was proposed to accommodate *Tyromyces merulinus* (Zmitrovich 2018) and was placed in the Incrustoporiaceae (Zmitrovich 2018, He et al. 2019), though without confirming the phylogenetic analysis. Liu et al. (2023a), based on phylogenetic analysis of multiple genes, showed that specimens of *Gloeoporellus merulinus* were grouped together, forming a monophyletic lineage (viz. Gloeoporellaceae B.K. Cui, Shun Liu & Y.C. Dai), and was closely related Fragiliporiaceae and Incrustoporiaceae without statistical support. In this study, the phylogenetic analysis based on ITS, LSU, mtSSU, RPB1 and TEF1 data (Fig. 13) reveals that Gloeoporellaceae is the sister taxon to Incrustoporiaceae and is not closely related to Fragiliporiaceae. This finding contrasts with the results of the previous study (Liu et al. 2023a), and the discrepancy may be due to the unstable topology and lower support values. Hence, using more gene segments and scientific methods to study wood-inhabiting fungi is a current trend.

The Phanerochaete lineage contains a large corticoid genus Phanerochaete s.s. and three small polyporoid genera: Oxychaete Miettinen, Phanerina Miettinen and Riopa D.A. Reid, where these four genera were typically characterized by having the resupinate basidiocarps, and a monomitic hyphal system with simple septate generative hyphae (Chen et al. 2021). The boundaries of the genera in the lineage were determined through morphological and molecular analyses by various researchers (Floudas & Hibbett 2015, Miettinen et al. 2016). Hence, numerous additional taxa, with a particular focus on *Phanerochaete* s.s., have been described based on morphological and molecular characteristics in recent years (Xu et al. 2020c, Chen et al. 2021, Wang & Zhao 2021a, Yu et al. 2023a). Nevertheless, the whole *Phanerochaete* s.l. remains a polyphyletic group, as certain species of *Phanerochaete* s.l. were clustered together with other genera in the Irpicaceae according to fungal research works (Floudas & Hibbett 2015, Justo et al. 2017, Chen et al. 2021). In our study, phylogenetic analysis based on ITS, nLSU, RPB1, RPB2 and TEF1 data (Fig. 16), Phanerochaete s.s. is closely related to the fungal genera Oxychaete, Phanerina and Pirex Hjortstam & Ryvarden, in which the topology among several species differs slightly from the previous study (Chen et al. 2021). Hence, the taxonomy and phylogeny of Phanerochaete s.l. need to go further exploration, based on additional specimens and sequences worldwide.

Traditionally, the genus Steccherinum has been distinguished from other genera by the hymenophore configuration, with a poroid structure in Junghuhnia and a hydnoid in Steccherinum, however, microscopically, both genera exhibit almost identical characters (Westphalen et al. 2021). Antrodiella was also related to Steccherinum, yet, distinguished by the lack of cystidia (Ryvarden 1991). Despite recent studies, including molecular data (Miettinen et al. 2012), showed that the morphological segregation of Junghuhnia and Steccherinum was not supported by molecular phylogeny. Although Steccherinum was well-supported within the residual polyporoid clade (Miettinen et al. 2012, Binder et. al 2013), the clade remained unresolved. Many species were treated as Junghuhnia group within the Steccherinum clade, separated from J. crustacea, the type of Junghuhnia and is distinguished by the morphological character of the hydnoid hymenophore (Westphalen et al. 2021). The phylogenetic analysis, based on molecular data of ITS+nLSU sequences, indicated that two newly identified Steccherinum species, i.e. S. tenuissimum and S. xanthum, formed a cluster within the residual polyporoid clade (Wu et al. 2021b). Nevertheless, the phylogenetic analysis based on ITS+nLSU sequences of Steccherinum and related genera in Steccherinaceae, showed that the two species S. tenuissimum and S. xanthum were not clustered with the core group (Dong et al. 2023b). However, these two species shared the distinctly hydnoid hymenophore, in which they were placed within *Steccherinum* instead of the *Junghuhnia* (Wu et al. 2021b). In our study, the phylogenetic analysis based on ITS, nLSU, mtSSU, RPB1, RPB2 and TEF1 data (Fig. 17), we confirm that the two species S. tenuissimum and S. xanthum, do not cluster with the core group. Besides, we report a new species, S. lincangense, closely related to two other species, S. tenuissimum and S. xanthum. Steccherinum lincangense shares similarities with the hydnoid hymenophore observed in S. tenuissimum and S. xanthum. Additionally, a peculiar phenomenon occurs in Steccherinum where it becomes challenging to identify morphologically

different characteristics to coincide with the results of the phylogeny, making it difficult to delineate distinct phylogenetic species. Consequently, this difficulty may result in the recognition of 'new taxa' within *Steccherinum*. Hence, we choose not to treat many lineages as separate genera of *Steccherinum*, until we have sufficient evidence from morphology and phylogeny, including available samples and sequences worldwide in future studies.

Previous studies have shown that *Scytinostroma* is polyphyletic (Larsson & Larsson 2003). Based on ITS1-5.8S-ITS2-nrLSU sequences of samples of *Scytinostroma* s.s. and representative taxa of other related genera, the phylogenetic analyses of Peniophoraceae revealed that this clade was treated as a monophyletic group. The two *Scytinostroma* species *S. artocreas* (Berk. & M.A. Curtis) K.-H. Larss. and *S. incrustatum* (S.H. He et al.) K.H. Larss. were transferred from *Michenera* by Stalpers et al. (2021) based on morphological evidence. Subsequently, from phylogenetic analyses, it was inferred that *S. artocreas* and *S. incrustatum* grouped together and were nested within *Scytinostroma* s.s. (Li et al. 2023b). In our current study, based on phylogenetic analysis using ITS+nLSU data (Fig. 19), the two species are confirmed to be grouped together and clustered into the genus *Scytinostroma*, in consistent with previous research (Li et al. 2023b). Moreover, the new species *S. daweishanense* is closely related to both *S. artocreas* and *S. incrustatum*.

Molecular studies have shown that *Subulicystidium* is closely related to *Tubulicium vermiferum* (Bourdot) Oberw. (Hibbett & Binder 2002, Larsson et al. 2004). Later, molecular evidence supported *Subulicystidium* as a member of Hydnodontaceae (Trechisporales), despite a lack of clear morphological affinity (Larsson 2007a). The monotypic genus *Aegeritina* comprises *A. tortuosa* (Bourdot & Galzin) Jülich, accepted as the asexual stage of *Subulicystidium longisporum* (Eriksson et al. 1984). Stalpers et al. (2021) recommended retention of the earlier generic name *Subulicystidium* over *Aegeritina*, and then *Subulicystidium* was morphologically distinct from other genera in Trechisporales in the presence of a crystalline sheath on the cystidia (Liu et al. 2022c). In our current study, based on ITS, nLSU, mtSSU, RPB2 and TEF1 data phylogenetic analysis (Fig. 20), *Subulicystidium* is closely grouped with the genus *Tubulicium* Oberw. Morphologically, *Tubulicium* is distinguished from *Subulicystidium* by its multi-rooted lyocystidia covered by dendroid hyphae and sigmoid smooth basidiospores (Bernicchia & Gorjón 2010).

Yunnan Province is situated in the Yunnan-Guizhou Plateau, which includes the Hengduan Mountain Range. Yunnan's climate is dominated by a large elevational range and the seasonal alternation of the southwest and southeast monsoons (Qian et al. 2020). The climate of Yunnan Province belongs to the subtropical monsoon climate, and a small part of the southern region has a tropical monsoon climate. Yunnan Province is rich in biodiversity due to its diverse topography and climate, harboring the most plant species in the country. This includes various types such as tropical, subtropical, warm temperate, middle temperate and cold temperate zones (Liu et al. 1959, Zhu 2022). Up to now, Yunnan has established over 150 nature reserves (Yan et al. 2021), including 21 national nature reserves (Fig. 1). The number continues to increase, with northern Yunnan being characterized by mixed forest, while the southern part of the province is predominantly broad-leaved forest (Fig. 1). These distinctions are influenced by terrain, elevation, climate and other factors in Yunnan-Guizhou Plateau (Wu 1980, 1987, Zhu 2022). The Yunnan Province, recognized as the "Ecological Security Barrier in Southwest China" and "Biodiversity Treasure", plays a crucial role in the national ecological safety and biodiversity conservation structure (Yan et al. 2021). The Yunnan-Guizhou Plateau is rich in woody plant species, providing excellent substrates for wood-inhabiting fungi. Hence, studying the diversity of wood-inhabiting fungi in the Yunnan-Guizhou Plateau of China is of great significance. Based on this study, the results not only enrich the species diversity of fungi worldwide but also contribute to the branches of the fungal tree of life.

Despite the discovery of high species diversity among wood-inhabiting fungi in recent years (Wijayawardene et al. 2020, Chen et al. 2021, He et al. 2022, Liu et al. 2022b, c, Jayawardena et al. 2023, Zhao et al. 2023a), systematic studies still need to be conducted for many groups. The present study aims to fill the knowledge gap regarding wood-inhabiting fungi by reporting new

species, and providing the detailed morphological descriptions and phylogenetic analyses of these fungal species, while also contributing to the enrichment of fungal diversity in East Asia.

ACKNOWLEDGEMENTS

The research was supported by the National Natural Science Foundation of China (Project No. 32170004, U2102220), Forestry Innovation Programs of Southwest Forestry University (Grant No: LXXK-2023Z07), the High-level Talents Program of Yunnan Province (YNQR-QNRC-2018-111), and the Research Project of Key Laboratory of Forest Disaster Warning and Control in Universities of Yunnan Province (ZKJS-S-202208).

Author contributions

Conceptualization, C-LZ; methodology, C-LZ, AM and J-HD; software, C-LZ, H-MZ, and J-HD; validation, C-LZ and J-HD; formal analysis, C-LZ and J-HD; investigation, C-LZ, J-HD, Y-LD and X-FL; resources C-LZ; writing–original draft preparation, AM, C-LZ, H-MZ, J-HD, QL, QY, QZ, X-CZ, Y-FD, Y-LD and Y-XL; writing–review and editing, AM, C-LZ and J-HD; visualization, C-LZ, H-MZ and J-HD; supervision, C-LZ, and H-MZ; project administration, C-LZ; funding acquisition, C-LZ. All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare that there is no conflict of interest.

REFERENCES

- Aman N, Khalid AN, Moncalvo JM. 2022 A compendium of macrofungi of Pakistan by ecoregions. MycoKeys 89, 171–233. Doi 10.3897/mycokeys.89.81148
- Banker HJ. 1902 A historical review of the proposed genera of the Hydnaceae. Bulletin of the Torrey Botanical Club 29, 436–448.
- Bau T, Wang JR, Cui BK, Liu Y. 2013 Diversity of macrofungi in Shandong Province, China. Mycosystema 32, 643–670.
- Bau T, Wang JR, Cui BK, Lu WL et al. 2015 Species diversity of macrofungi in Beijing, China. Mycosystema 34, 982–995.
- Bernicchia A, Gorjón SP. 2010 Fungi Europaei 12: Corticiaceae s.l. Edizioni Candusso, Alassio, Italy, Pp. 1–1008.
- Bian LS, Dai YC. 2017 Morphological and molecular evidence for three new species of *Coltricia* (Hymenochaetaceae, Basidiomycota) from Southern China. Mycologia 109, 64–74. Doi 10.1080/00275514.2017.1286571
- Bian LS, Zhao CL, Wu F. 2016 A new species of *Skeletocutis* (Polyporales, Basidiomycota) from Yunnan of China. Phytotaxa 270, 267–276. Doi 10.1007/S10267-010-0068-1
- Binder M, Hibbett DS, Larsson KH, Larsson E et al. 2005 The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Systematics and Biodiversity 3, 113–157. Doi 10.1017/S1477200005001623
- Binder M, Larsson KH, Matheny PB, Hibbett DS et al. 2010 Amylocorticiales ord. nov. and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102, 865–880. Doi 10.3852/09-288
- Binder M, Justo A, Riley R, Salamov A et al. 2013 Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105, 1350–1373. Doi 10.3852/13-003
- Bodensteiner P, Binder M, Moncalvo JM, Agerer R et al. 2004 Phylogenetic relationships of cyphelloid Homobasidiomycetes. Molecular Evolution and Phylogenetics 33, 501–515. Doi 10.1016/j.ympev.2004.06.007
- Boidin J, Gilles G. 1998 Contribution à l'étude des genres *Dendrocorticium*, *Dendrodontia* et *Dentocorticium* (Basidiomycotina). Cryptogamie Mycologie 19, 181–202.

- Boidin J, Lanquetin P. 1984 Répertoire des données utiles pour effectuer les tests d'intercompatibilité chez les basidiomycètes. III Aphyllophorales non porées. Cryptogamie Mycologie 5, 193–245.
- Boidin J, Terra P, Lanquetin P. 1968 Contribution à la connaissance des caractères mycéliens et sexuels des genres *Aleurodiscus*, *Dendrothele*, *Laeticorticium* et *Vuilleminia*. Bulletin de la Societe Mycologique de France 84, 53–84.
- Bouckaert R, Heled J, Kühnert D, Vaughan T et al. 2014 BEAST2: a software platform forBayesian evolutionary analysis. PLoS Computational Biology 10, e1003537. Doi 10.1371/journal.pcbi.1003537
- Bucher VVC, Hyde KD, Pointing SB, Reddy CA. 2004 Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Diversity 15, 1–14.
- Cao B, He MQ, Ling ZL, Zhang MZ et al. 2021a A revision of *Agaricus* section *Arvenses* with nine new species from China. Mycologia 113, 191–211. Doi 10.1080/00275514.2020.1830247
- Cao T, Yu JR, Nguyễn TTT, Yuan HS. 2021b Multiple-marker phylogeny and morphological evidence reveal two new species in Steccherinaceae (Polyporales, Basidiomycota) from Asia. MycoKeys 78, 169–186. Doi 10.3897/mycokeys.78.57823
- Carlsson F, Edman M, Holm S, Eriksson AM et al. 2012 Increased heat resistance in mycelia from wood fungi prevalent in forests characterized by fire: a possible adaptation to forest fire. Fungal Biology 116, 1025–1031. Doi 10.1016/j.funbio.2012.07.005
- Chen CC, Chen CY, Wu SH. 2021 Species diversity, taxonomy and multi-gene phylogeny of phlebioid clade (Phanerochaetaceae, Irpicaceae, Meruliaceae) of Polyporales. Fungal Diversity 111, 337–442. Doi 10.1007/s13225-021-00490-w
- Chen CC, Wu SH, Chen CY. 2018 *Hydnophanerochaete* and *Odontoefibula*, two new genera of phanerochaetoid fungi (Polyporales, Basidiomycota) from East Asia. MycoKeys 39, 75–96. Doi 10.3897/mycokeys.39.28010
- Chen JJ, Zhou LW, Ji XH, Zhao CL. 2016 *Hyphodontia dimitica* and *H. subefibulata* spp. nov. (Schizoporaceae, Hymenochaetales) from Southern China based on morphological and molecular characters. Phytotaxa 269, 1–13. Doi 10.11646/phytotaxa.269.1.1
- Chen JZ, Zhao CL. 2020 Morphological and molecular identification of four new resupinate species of *Lyomyces* (Hymenochaetales) from Southern China. MycoKeys 65, 101–118. Doi 10.3897/mycokeys.65.48660
- Chen YY, Wu F, Wang M, Cui BK. 2017 Species diversity and molecular systematics of *Fibroporia* (Polyporales, Basidiomycota) and its related genera. Mycological Progress 16, 521–533. Doi 10.1007/s11557-017-1285-1
- Cheng Y, Zhou LJ, Jiang JH, Tian XM et al. 2023 *Phylloporia* (Hymenochaetales, Basidiomycota), a medicinal wood-inhabiting fungal genus with much potential for commercial development. Food Reviews International 39(5), 2776–2789. Doi 10.1080/87559129.2021.1967382
- Cho SE, Jo JW, Kim NK, Kwag YN et al. 2019 Macrofungal survey of the Tian Shan Mountains. Mycobiology 47(4), 378–390. Doi 10.1080/12298093.2019.1661565
- Christiansen MP. 1960 Danish resupinate fungi. Part II. Homobasidiomycetes. Dansk botanisk Arkiv 19, 57–388.
- Crous PW, Wingfield MJ, Burgess TI, Hardy GESJ et al. 2016 Fungal Planet description sheets: 469–557. Persoonia 37, 218–403. Doi 10.3767/003158516X694499
- Crous PW, Wingfield MJ, Guarro J, Cheewangkoon R et al. 2013 Fungal planet description sheets: 154–213. Persoonia 31, 188–296. Doi 10.3767/003158513X675925
- Cui BK, Li HJ, Ji X, Zhou JL et al. 2019 Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97, 137–392. Doi 10.1007/s13225-019-00427-4

- Dai YC. 2011 A revised checklist of corticioid and hydnoid fungi in China for 2010. Mycoscience 52, 69–79. Doi 10.1007/S10267-010-0068-1
- Dai YC. 2012 Polypore diversity in China with an annotated checklist of Chinese polypores. Mycoscience 53, 49–80. Doi 10.1007/s10267-011-0134-3
- Dai YC, Cui BK, Si J, He SH et al. 2015a Dynamics of the worldwide number of fungi with emphasis on Fungal Diversity in China. Mycological Progress 14, 1–9. Doi 10.1007/s11557-015-1084-5
- Dai YC, Wei YL, Zhou LW. 2015b Polypore richness along an elevational gradient: a case study in Changbaishan Nature Reserve, Northeastern China. Fungal Ecology 13, 226–228. Doi 10.1016/j.funeco.2014.07.002
- Dai YC, Yang ZL, Cui BK, Wu G et al. 2021 Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema 40, 770–805. Doi 10.13346/j.mycosystema.210036
- Dai YC, Zhou LW, Steffen K. 2011 Wood-decaying fungi in eastern Himalayas 1: polypores from Zixishan Nature Reserve, Yunnan province, China. Mycosystema 30, 674–679.
- Darriba D, Taboada GL, Doallo R, Posada D. 2012 jModelTest 2: more models, new heuristics and parallel computing. Nature Method 9, 772. Doi 10.1038/nmeth.2109
- DePriest PT, Sikaroodi M, Lawrey JD, Diederich P. 2005 *Marchandiomyces lignicola* sp. nov. shows recent and repeated transition between a lignicolous and a lichenicolous habit. Mycological Research 109, 57–70. Doi 10.1017/s0953756204001601
- Diederich P, Zimmermann E, Sikaroodi M, Ghobad-Nejhad M. 2018 A first lichenicolous *Corticium* species (Corticiaceae, Corticiales), described from *Thamnolia* in Switzerland. Bulletin de la Société des Naturalistes Luxembourgeois 120, 49–56.
- Dimou DM, Polemis E, Konstantinidis G, Kaounas V et al. 2016 Diversity of macrofungi in the Greek islands of Lesvos and Agios Efstratios, NE Aegean Sea. Nova Hedwigia 102, 439–475. Doi 10.1127/nova_hedwigia/2015/0319
- Doğan HH, Kurt F. 2016 New macrofungi records from Turkey and macroFungal Diversity of Pozantı-Adana. Turkish Journal of Botany 40(2), 209–217. Doi 10.3906/bot-1501-22
- Dong JH, Gu JY, Zhao CL. 2023a Diversity of wood-decaying fungi in Wenshan Area, Yunnan Province, China. Mycosystema 42, 638–662. Doi 10.13346/j.mycosystema.220205
- Dong JH, He X, Zhao CL. 2021 *Skvortzovia yunnanensis*, a new species of corticioid fungus from Southern China. Kew Bulletin 76, 549–555. Doi 10.1007/S12225-021-09959-Y
- Dong JH, Wu YX, Zhao CL. 2022 Two new species of *Steccherinum* (Polyporales, Basidiomycota) from Southern China based on morphology and DNA sequence data. Mycoscience 63, 65–72. Doi 10.47371/mycosci.2022.02.002
- Dong JH, Zhang XC, Chen JJ, Zhu ZL et al. 2023b A phylogenetic and taxonomic study on *Steccherinum* (Polyporales, Basidiomycota): focusing on three new *Steccherinum* species from Southern China. Frontiers in Cellular and Infection Microbiology 12, 1103579. Doi 10.3389/fcimb.2022.1103579
- Donk MA. 1956 Notes on resupinate Hymenomycetes III. Fungus 26, 3–24.
- Donk MA. 1963 The generic names proposed for Hymenomycetes. XIII. Additions and corrections to parts I–IX, XII (Conclusion). Taxon 12, 153–168. Doi 10.2307/121618
- Du R, Dai YC. 2020 А new species and three new combinations _ Basidiomycota). of Skeletocutis (Incrustoporiaceae, Mycosystema 39, 637–644. Doi 10.13346/j.mycosystema.200006
- Du R, Ji XH. 2019 A new species of *Skeletocutis* (Polyporales, Basidiomycota) from Vietnam. Journal of Microbiology & Experimentation 7, 20–25. Doi 10.15406/jmen.2019.07.00234
- Duan ZY, Guan QX, Luo KY, Zhao CL. 2023a Morphological and molecular identification of three new resupinate species of *Hyphoderma* (Hyphodermataceae, Agaricomycetes) from East Asia. Phytotaxa 599, 1–19. Doi 10.11646/phytotaxa.599.1.1

- Duan ZY, Yang X, Liu CM, Zhao CL. 2023b Morphological characteristics and phylogenetic analyses revealed two additional taxa in *Cyathus* (Agaricales, Basidiomycota). Phytotaxa 598, 1–20. Doi 10.11646/phytotaxa.598.1.1
- Duhem B, Michel H. 2006 Une nouvelle espèce de *Corticium* de la region méditerranéenne. Clé du genre *Corticium* sensu stricto. Bulletin de la Societe Mycologique de France 122, 145–160.
- Duhem B, Michel H. 2009 Une espèce nouvelle de *Corticium* s.st. Etudes dans les genres Dendrocorticium et Dentocorticium (Basidiomycotina). Cryptogamie Mycologie 30, 161–179.
- Eriksson J. 1958 Studies in the Heterobasidiomycetes and Homobasidiomycetes–Aphyllophorales of Muddus National Park in North Sweden. Symbolae Botanicae Upsalienses 16, 1–172.
- Eriksson J, Hjortstam K, Ryvarden L. 1984 The Corticiaceae of North Europe. 7. Fungiflora, Oslo.
- Eriksson J, Ryvarden L. 1976 The Corticiaceae of North Europe. In *Hyphodermella Mycoacia*, vol. 4. Fungiflora, Oslo.
- Fan LF, Ji XH, Si J. 2017 A new species in the Skeletocutis subincarnata complex (Polyporales, Basidiomycota) from Southwestern China. Mycosphere 8: 1253–1260. Doi 10.5943/mycosphere/8/6/10
- Felsenstein J. 1985 Confidence intervals on phylogenetics: an approach using bootstrap. Evolution 39, 783–791. Doi 10.1111/j.1558-5646.1985.tb00420.x
- Feng B, Yang Z. 2018 Studies on diversity of higher fungi in Yunnan, southwestern China: A review. Plant diversity 40(4), 165–171.
- Fink S, Gross A, Senn-Irlet B, Scheidegger C. 2021 Citizen science data predict high potential for macrofungal refugia outside protected riparian areas. Fungal Ecology 49, 100981.
- Finy P, Papp V, Knapp DG, Bóka K et al. 2021 *Geastrum dolomiticum*, a new earthstar species from Central Europe. Plant Systematics and Evolution 307, 1–12. Doi 10.1007/s00606-021-01766-z
- Floudas D, Hibbett DS. 2015 Revisiting the taxonomy of *Phanerochaete* (Polyporales, Basidiomycota) using a four gene dataset and extensive ITS sampling. Fungal Biology 119, 679–719. Doi 10.1016/j.funbio.2015.04.003
- Fukami T, Dickie IA, Paula Wilkie J, Paulus BC et al. 2010 Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecology Letters 13, 675–84. Doi 10.1111/j.1461-0248.2010.01465.x
- Gafforov Y, Ordynets A, Langer E, Yarasheva M et al. 2020 Species diversity with comprehensive annotations of wood-inhabiting poroid and corticioid fungi in Uzbekistan. Frontiers in Microbiology 11, 598321. Doi 10.3389/fmicb.2020.598321
- Garcia-Sandoval R, Wang Z, Binder M, Hibbett DS. 2011 Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot. Mycologia 103, 510–524. Doi 10.3852/10-209
- Geml J, Davis DD, Geiser DM. 2005 Systematics of the genus *Sphaerobolus* based on molecular and morphological data, with the description of *Sphaerobolus ingoldii* sp. nov. Mycologia 97, 680–694. Doi 10.3852/mycologia.97.3.680
- Ghobad-Nejhad M, Langer E, Nakasone K, Diederich P et al. 2021 Digging up the roots: taxonomic and phylogenetic disentanglements in Corticiaceae s.s. (Corticiales, Basidiomycota) and evolution of nutritional modes. Frontiers in Microbiology 12, 1–21. Doi 10.3389/fmicb.2021.704802
- Gilbertson RL, Nakasone KK. 2003 New taxa of Hawaiian corticioid fungi are described with keys to *Crustoderma*, *Radulomyces* and *Scopuloides*. Mycologia 95, 467–473. Doi 10.2307/3761888
- Gilbertson RL, Ryvarden L. 1987 North American Polypores 1–2. Fungiflora; Oslo: Lubrecht and Cramer Ltd. pp. 1–433.
- Ginns J. 1976 Merulius: s.s. and s.l., taxonomic disposition and identification of species. Canadian Journal of Botany 54, 100–167.

- Ginns J, Millman L. 2011 Mysterious Asian beauty conquers Massachusetts. Fungi, The Nippon Fungological Soc (Tokyo) 4, 61–63.
- Goranova G, Binder M, Hibbett DS. 2003 Molecular phylogenetics indicate that the corticioid genus *Dendrothele* is highly polyphyletic. Inoculum 54, 22.
- Gorjón SP, Hallenberg N. 2013 Some new species and a first checklist of corticioid fungi (Basidiomycota) from Chile. Mycological Progress 12, 185–192. Doi 10.1007/s11557-012-0824-z
- Gray SF. 1821 A Natural Arrangement of British Plants. Nabu Press, London, UK, Pp. 1–824.
- Gruhn G, Hallenberg N. 2018 Au sujet du genre *Skvortzovia* (Basidiomycota, Hymenochaetales). Bulletin Mycologique et Botanique Dauphiné-Savoie 231, 5–13.
- Gruhn G, Hallenberg N, Courtecuisse R. 2016 *Tubulicrinis martinicensis* sp. nov., a corticioid species from Martinique (French West Indies). Mycotaxon 131, 631–638. Doi 10.5248/131.631
- Gruhn G, Schimann H, Roy M. 2017 Description et phylogénie de *Hypochnicium microsporum*, une espèce nouvelle corticioïde néotropicale. Bulletin de la Société Mycologique de France 130, 301–314.
- Guan QX, Zhao TJ, Zhao CL. 2020 Morphological characters and phylogenetic analyses reveal two new species of *Peniophorella* from southern China. Mycological Progress 19, 397–404. Doi 10.1007/s11557-020-01568-6
- Guan QX, Huang J, Huang J, Zhao CL. 2023 Five new species of Schizoporaceae (Basidiomycota, Hymenochaetales) from East Asia. MycoKeys 96, 25–56. Doi 10.3897/mycokeys.96.99327
- Hallenberg N, Hjortstam K. 1996 Four new species of corticioid fungi (Basidiomycotina, Aphyllophorales) from Argentina. Mycotaxon 57, 117–123.
- Hallenberg N, Nilsson RH, Antonelli A, Wu SH et al. 2007 The *Peniophorella praetermissa* species complex (Basidiomycota). Mycological Research 111, 1366–1376. Doi 10.1016/j.mycres.2007.10.001
- Han ML, Chen YY, Shen LL, Song J et al. 2016 Taxonomy and phylogeny of the brown-rot fungi: *Fomitopsis* and its related genera. Fungal Diversity 80, 343–373. Doi 10.1007/s13225-016-0364-y
- He MQ, Zhao RL, Hyde KD, Begerow D et al. 2019 Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99(1), 105–367. Doi 10.1007/s13225-019-00435-4
- He MQ, Zhao RL, Liu DM, Denchev TT et al. 2022 Species diversity of Basidiomycota. Fungal Diversity 114, 281–325. Doi 10.1007/s13225-021-00497-3
- He SH, Dai YC. 2012 Taxonomy and phylogeny of *Hymenochaete* and allied genera of Hymenochaetaceae (Basidiomycota) in China. Fungal Diversity 56, 77–93. Doi 10.1007/s13225-012-0174-9
- He SH, Li HJ. 2013 *Pseudochaete latesetosa* and *P. subrigidula* spp. nov. (Hymenochaetales, Basidiomycota) from China based on morphological and molecular characters. Mycological Progress 12, 331–339. Doi 10.1007/s11557-012-0838-6
- He X, Shi ZJ, Zhao CL. 2020 Morphological and molecular identification of two new species of *Tubulicrinis* (Hymenochaetaceae, Hymenochaetales) from southern China. Mycoscience 61, 184–189. Doi 10.1016/j.myc.2020.03.008
- He X, Zhao CL. 2022 Diversity of wood-decaying fungi in Wuliangshan Area, Yunnan Province, P.R. China. Diversity 14, 1–29. Doi 10.3390/d14020131
- Hibbett DS. 2016 The invisible dimension of Fungal Diversity. Science 351, 1150–1151. Doi 10.1126/science.aae0380
- Hibbett DS, Binder M. 2002 Evolution of complex fruiting-body morphologies in homobasidiomycetes. Proceedings of The Royal Society Biological Sciences 269, 1963–1969. Doi 10.1098/rspb.2002.2123
- Hibbett DS, Taylor JW. 2013 Fungal systematics: is a new age of enlightenment at hand? Nature Reviews Microbiology 11, 129–133. Doi 10.1038/nrmicro2963

- Hjortstam K, Bononi VLR. 1987 A contribution to the knowledge of Corticiaceae s.l. (Aphyllophorales) in Brazil. Mycotaxon 28, 1–15.
- Hjortstam K, Larsson KH, Ryvarden L. 1987 The Corticiaceae of North Europe vol. 1. Fungiflora, Oslo.
- Hjortstam K, Ryvarden L. 1997 Corticioid species (Basidiomycotina, Aphyllophorales) from Colombia collected by Leif Ryvarden. Mycotaxon 64, 229–241.
- Hjortstam K, Ryvarden L. 2004 Some new and noteworthy corticioid fungi (Basidiomycotina, Aphyllophorales) from Japan. Synopsis Fungorum 18, 8–13.
- Hjortstam K, Ryvarden L. 2007 Studies in corticioid fungi from Venezuela III (Basidiomycotina, Aphyllophorales). Synopsis Fungorum 23, 56–107.
- Hjortstam K, Ryvarden L. 2009 A checklist of names in *Hyphodontia* sensu stricto-sensu lato and *Schizopora* with new combinations in *Lagarobasidium*, *Lyomyces*, *Kneiffiella*, *Schizopora* and *Xylodon*. Synopsis Fungorum 26, 33–55.
- Höhnel F, Litschauer V. 1907 Beiträge zur Kenntnis der Corticieen (II. Mitteilung). Sitzungsber Kaiserl Akad Wiss Wien Math-Naturwiss Cl Abt 1 116, 739–852.
- Hyde KD, Maharachchikumbura SSN, Hongsanan S, Samarakoon MC et al. 2017a The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. Fungal Diversity 84, 1–23. Doi 10.1007/s13225-017-0383-3
- Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A et al. 2017b Fungal Diversity notes 603– 708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87, 1–235. Doi 10.1007/s13225-017-0391-3
- Hyde KD, Norphanphoun C, Chen J, Dissanayake AJ et al. 2018 Thailand's amazing diversity: up to 96% of fungi in northern Thailand may be novel. Fungal Diversity 93, 215–239. Doi 10.1007/s13225-018-0415-7
- Hyde KD, Suwannarach N, Jayawardena RS, Manawasinghe IS et al. 2021 Mycosphere notes 325–344. Novel species and records of fungal taxa from around the world. Mycosphere 12, 1101–1156. Doi 10.5943/mycosphere/12/1/14
- James TY, Stajich JE, Hittinger CT, Rokas A. 2020 Toward a fully resolved fungal tree of life. Annual Review of Microbiology 74, 291–313. Doi 10.1146/annurev-micro-022020-051835
- Jang Y, Lee SW, Lim YW, Lee JJ et al. 2013 *Hypochnicium pini*, a new corticioid basidiomycete in East Asia. Mycotaxon 124, 209–217. Doi 10.5248/124.209
- Jayawardena RS, Hyde KD, Wang S, Sun Y et al. 2023 Fungal Diversity notes 1512–1610: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 117, 1–272. Doi 10.1007/s13225-022-00513-0
- Jia BS, Zhou LW, Cui BK, Rivoire B et al. 2014 Taxonomy and phylogeny of *Ceriporia* (Polyporales, Basidiomycota) with an emphasis of Chinese collections. Mycological Progress 13, 81–93. Doi 10.1007/s11557-013-0895-5
- Johannesson H, Renvall P, Stenlid J. 2000 Taxonomy of *Antrodiella* inferred from morphological and molecular data. Mycological Progress 104, 92–99. Doi 10.1017/S0953756299008953
- Jülich W. 1982 Higher taxa of Basidiomycetes. Bibliotheca Mycologica 85, 1–485.
- Jülich W. 1978 Studies in resupinate Basidiomycetes V. Some new genera and species. Persoonia 10, 137–140.
- Justo A, Miettinen O, Floudas D, Ortiz-Santan B et al. 2017 A revised family-level classification of the polyporales (Basidiomycota). Fungal Biology 121, 798–824. Doi 10.1016/j.funbio.2017.05.010
- Karsten PA. 1881 Enumeratio *Thelephorearum* Fr. et *Clavariearum* Fr. *Fennicarum*, systematenovo dispositarum. Revue Mycologique Toulouse 3, 21–23.
- Karsten PA. 1889 Kritisk öfversigt af Finlands Basidsvampar (Basidiomycetes; Gastero- & Hymenomycetes). Bidrag tillKännedom av Finlands Natur och Folk 48, 1–470.
- Katoh K, Rozewicki J, Yamada KD. 2019 MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20, 1160–1166. Doi 10.1093/bib/bbx108

- Kim CS, Jo JW, Kwag YN, Sung GH et al. 2015 Mushroom flora of Ulleung-gun and a newly recorded *Bovista* species in the Republic of Korea. Mycobiology 43, 239–57. Doi 10.5941/MYCO.2015.43.3.239
- Kinge TR, Egbe EA, Tabi EM, Nji TM et al. 2013 The first checklist of macrofungi of mount Cameroon. Mycosphere 4, 694–699. Doi 10.5943/mycosphere/4/4/5
- Kneal RJ, Smith ME. 2015 Artomyces nothofagi sp. nov., a clavarioid fungus from a Chilean Nothofagus forest. Mycotaxon 130, 653–660. Doi 10.5248/130.653
- Kolařík M, Vohník M. 2018 When the ribosomal DNA does not tell the truth: the case of the taxonomic position of *Kurtia argillacea*, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biology 122, 1–18. Doi 10.1016/j.funbio.2017.09.006
- Korhonen A, Seelan JSS, Miettinen O. 2018 Cryptic species diversity in polypores: the *Skeletocutis nivea* species complex. MycoKeys 18, 45–82. Doi 10.3897/mycokeys.36.27002
- Kotiranta H, Saarenoksa R. 1990 Reports of Finnish corticolous Aphyllophorales (Basidiomycetes). Karstenia 30, 43–69.
- Kotlába F, Pouzar Z. 1958 Polypori novi vel minus cogniti Cechoslovakiae III. Ceská Mykologie 12, 95–104.
- Krah FS, Seibold S, Brandl R, Baldrian P et al. 2018 Independent effects of host and environment on the diversity of wood-inhabiting fungi. Journal of Ecology 106(4), 1428–1442. Doi 10.1111/1365-2745.12939
- Larsen MJ, Gilbertson RL. 1974 New taxa of *Laeticorticium* (Aphyllophorales, Corticiaceae). Can J Bot 52, 687–690. Doi 10.1139/b74-087
- Larsen MJ, Gilbertson RL. 1978 *Laeticorticium lombardiae* (Aphyllophorales, Corticiaceae): a newly recognized segregate from the *L. roseum* complex. Mycologia 70, 206–208. Doi 10.1080/00275514.1978.12020221
- Larsen MJ, Nakasone KK. 1984 Additional new taxa of *Laeticorticium* (Aphyllophorales, Corticiaceae). Mycologia 76, 528–532. Doi 10.1080/00275514.1984.12023874
- Larsson A. 2014 AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30, 3276–3278. Doi 10.1093/bioinformatics/btu531
- Larsson E, Larsson KH. 2003 Phylogenetic relationships of russuloid basidiomycetes with emphasis on aphyllophoralean taxa. Mycologia 95, 1037–1065. Doi 10.1080/15572536.2004.11833020
- Larsson KH. 2007a Re-thinking the classification of corticioid fungi. Mycological Research 111, 1040–1063. Doi 10.1016/j.mycres.2007.08.001
- Larsson KH. 2007b Molecular phylogeny of *Hyphoderma* and the reinstatement of *Peniophorella*. Mycological Research 111, 185–195. Doi 10.1016/j.mycres.2006.10.002
- Larsson KH, Larsson E, Kõljalg U. 2004 High phylogenetic diversity among corticioid Homobasidiomycetes. Mycological Research 108, 983–1002. Doi 10.1017/s0953756204000851
- Larsson KH, Parmasto E, Fischer M, Langer EJ et al. 2006 Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade. Mycologia 98, 926–936. Doi 10.1080/15572536.2006.11832622
- Leal-Dutra CA, Griffith GW, Neves MA, McLaughlin DJ et al. 2020 Reclassification of Pterulaceae Corner (Basidiomycota: Agaricales) introducing the ant-associated genus Myrmecopterula gen. nov., Phaeopterula Henn. and the corticioid Radulomycetaceae fam. nov. IMA Fungus 11, 1–24. Doi 10.1186/s43008-019-0022-6
- Leal-Dutra CA, Neves MA, Griffith GW, Reck M et al. 2018 Reclassification of *Parapterulicium* Corner (Pterulaceae, Agaricales), contributions to Lachnocladiaceae and Peniophoraceae (Russulales) and introduction of *Baltazaria* gen. nov. MycoKeys 37, 39–56. Doi 10.3897/mycokeys.37.26303
- Lemke PA. 1964 The genus *Aleurodiscus* (sensu lato) in North America. Canadian Journal of Botany 42: 723–768. Doi 10.1139/b64-066

- Li T, Cui L, Song X, Cui X et al. 2022a Wood decay fungi: an analysis of worldwide research. Journal of Soils and Sediments 22, 1688–1702. Doi 10.1007/s11368-022-03225-9
- Li T, Gao JL, Huang JH, Lei G et al. 2021 *Phlebiopsis xuefengensis* sp. nov. from *Gastrodia elata* (Orchidaceae) in Hunan Province, Southern China. South African Journal of Botany 142, 299–304. Doi 10.1016/j.sajb.2021.06.034
- Li Y, Chen CC, He SH. 2023a New corticioid taxa in Phanerochaetaceae (Polyporales, Basidiomycota) from East Asia. Frontiers in Microbiology 14, 1–23. Doi 10.3389/fmicb.2023.1093096
- Li Y, He SH, Chen CC, Nakasone KK et al. 2022b Global taxonomy and phylogeny of Irpicaceae (Polyporales, Basidiomycota) with descriptions of seven new species and proposals of two new combinations. Frontiers in Microbiology 13, 911–978. Doi 10.3389/fmicb.2022.911978
- Li Y, Xu WQ, Liu SL, Yang N et al. 2023b Species diversity and taxonomy of *Scytinostroma* sensu stricto (Russulales, Basidiomycota) with descriptions of four new species from China. MycoKeys 98, 133–152. Doi 10.3897/mycokeys.98.105632
- Lickey EB, Hughes KW, Petersen RH. 2003 Phylogenetic and taxonomic studies in *Artomyces* and *Clavicorona* (Homobasidiomycetes: Auriscalpiaceae). Sydowia 55, 181–254.
- Liu JW, Luangharn T, Wan SP, Wang R et al. 2022a A new edible species of *Gomphus* (Gomphaceae) from southwestern China. Mycoscience 63, 293–297. Doi 10.47371/mycosci.2022.09.002
- Liu S, Chen YY, Sun YF, He XL et al. 2022b Systematic classification and phylogenetic relationships of the brown-rot fungi within the Polyporales. Fungal Diversity 118, 1–94. Doi 10.1007/s13225-022-00511-2
- Liu S, Zhou JL, Song J, Sun YF et al. 2023a Climacocystaceae fam. nov. and Gloeoporellaceae fam. nov., two new families of Polyporales (Basidiomycota). Frontiers in Microbiology 14, 1115761. Doi 10.3389/fmicb.2023.1115761
- Liu SE, Feng ZW, Zhao DC. 1959 Some principles of vegetation regionalization in China. Journal of Integrative Plant Biology 2, 87–105.
- Liu SL, He SH. 2018 Taxonomy and phylogeny of *Dichostereum* (Russulales), with descriptions of three new species from southern China. MycoKeys 40, 111–126. Doi 10.3897/mycokeys.40.28700
- Liu SL, He SH, Liu DM, Zhou LW. 2021 Two new species of *Fibrodontia* (Trechisporales, Basidiomycota) with a key to worldwide species. Journal of Fungi 7, 982. Doi 10.3390/jof7110982
- Liu SL, He SH, Wang XW, May TW et al. 2022c Trechisporales emended with a segregation of Sistotremastrales ord. nov. (Basidiomycota). Mycosphere 13, 862–954. Doi 10.5943/mycosphere/13/1/11
- Liu SL, Ma HX, He SH, Dai YC. 2019 Four new corticioid species in Trechisporales (Basidiomycota) from East Asia and notes on phylogeny of the order. MycoKeys 48, 97–113. Doi 10.3897/mycokeys.48.31956
- Liu SL, Nakasone KK, He SH. 2018 *Michenera incrustata* sp. nov. (Peniophoraceae, Russulales) from Southern China. Nova Hedwigia 108, 197–206. Doi 10.1127/nova_hedwigia/2018/0500
- Liu XF, Tibpromma S, Hughes AC, Chethana KWT et al. 2023b Culturable mycota on bats in central and southern Yunnan Province, China. Mycosphere 14, 497–662. Doi 10.5943/mycosphere/14/1/7
- Liu XY, Liu SL, Wei HW, Wang XW et al. 2023c Preliminary species diversity and community phylogenetics of wood-inhabiting basidiomycetous fungi in the Dabie Mountains, Central China reveal unexpected richness. IMA Fungus 14, 23. Doi 10.1186/s43008-023-00130-9
- Liu YL, Whelen S, Hall BD. 1999 Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16, 1799–1808.
- Liu ZB, Dai YC. 2021 *Steccherinum fragile* sp. nov. and *S. subcollabens* comb. nov. (Steccherinaceae, Polyporales), evidenced by morphological characters and phylogenetic analysis. Phytotaxa 483, 106–116. Doi 10.11646/phytotaxa.483.2.3

- Liu ZB, Zhou M, Zhang QY, Si J. 2023d A contribution to the genus *Steccherinum* (Steccherinaceae, Polyporales): introducing two new species and two new combinations of the genus. Frontiers in Microbiology 14, 1166267. Doi 10.3389 /fmicb.2023.1166267
- Luo KY, Chen ZY, Zhao CL. 2022 Phylogenetic and taxonomic analyses of three new woodinhabiting fungi of *Xylodon* (Basidiomycota) in a forest ecological system. Journal of Fungi 8, 405. Doi 10.3390/jof8040405
- Luo KY, Qu MH, Zhao CL. 2021a Additions to the knowledge of corticioid *Xylodon* (Schizoporaceae, Hymenochaetales): introducing three new *Xylodon* species from Southern China. Diversity 13, 1–20. Doi 10.3390/d13110581
- Luo KY, Zhao CL.2021 *Fasciodontia yunnanensis* (Schizoporaceae, Hymenochaetales), a new species from Southern China. Annales Botanici Fennici 58, 259–266. Doi 10.5735/085.058.0411
- Luo X, Chen YH, Zhao CL. 2021b *Lyomyces fissuratus* and *L. fumosus* (Schizoporaceae, Hymenochaetales), new species from Southern China. Annales Botanici Fennici 58, 219–230. Doi 10.5735/085.058.0404
- Luo X, Chen YH, Zhao CL. 2021c Morphological and phylogenetic characterization of fungi within Hymenochaetales: introducing two new species from Southern China. Nordic Journal of Botany 12, 39. Doi 10.1111/njb.03414
- Lutzoni F, Kauff F, Vilgalys R. 2004 Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91, 1446–1480. Doi 10.3732/ajb.91.10.1446
- Ma HX, Si J, Dai YC, Zhu AH et al. 2022 Diversity of wood-inhabiting macrofungi in Hainan Province, South China. Mycosystema 41, 695–712. Doi 10.13346/j.mycosystema.210424
- Ma RX, Shi ZJ, Zhao CL. 2020 A new species of *Efibula* (Polyporales, Basidiomycota) from China. Phytotaxa 451, 238–244. Doi 10.11646/phytotaxa.451.3.7
- Ma X, Zhao CL. 2021 *Xylodon bambusinus* and *X. xinpingensis* spp. nov. (Hymenochaetales) from Southern China. Phytotaxa 511, 231–247. Doi 10.11646/ Phytotaxa.511.3.3
- Maas Geesteranus RA. 1971 Hydnaceous fungi of the eastern old world. Verhandelingen Koninklijke Nederlandse Akademie van Wetenschappen Afdeling Natuurkunde 60, 1–176.
- Maekawa N, Sugawara R, Kogi H, Norikura S et al. 2023 *Hypochnicium* sensu lato (Polyporales, Basidiomycota) from Japan, with descriptions of a new genus and three new species. Mycoscience 64, 19–34. Doi 10.47371/mycosci.2022.10.001
- Malysheva VF. 2006 Notes on rare species of aphyllophoroid fungi found in Zhiguli Nature Reserve (Samara Region, European Russia). Karstenia 46, 25–32.
- Mao WL, Wu YD, Liu HG, Yuan Y et al. 2023 A contribution to *Porogramme* (Polyporaceae, Agaricomycetes) and related genera. IMA Fungus 14, 1–5. Doi 10.1186/s43008-023-00110-z
- Matheny PB. 2005 Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (*Inocybe*, Agaricales). Molecular Phylogenetics and Evolution 35, 1–20. Doi 10.1016/j.ympev.2004.11.014
- Matheny PB, Liu YJ, Ammirati JF, Hall B. 2002 Using RPBI sequences to improve phylogenetic inference among mushrooms (*Inocybe*, Agaricales). American Journal of Botany 89, 688–698.
- Matheny PB, Wang Z, Binder M, Curti JM et al. 2007 Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Molecular Phylogenetics and Evolution 43, 430–451. Doi 10.1016/j.ympev.2006.08.024
- M'Barek HN, Arif S, Taidi B, Hajjaj H. 2020 Consolidated bioethanol production from olive mill waste: wood-decay fungi from central Morocco as promising decomposition and fermentation biocatalysts. Biotechnology Reports 28, e00541.
- Mi XC, Feng G, Hu YB, Zhang J et al. 2021 The global significance of biodiversity science in China: an overview, National Science Review, 8, 7. Doi 10.1093/nsr/nwab032
- Miettinen O, Larsson KH. 2011 *Sidera*, a new genus in Hymenochaetales with poroid and hydnoid species. Mycological Progress10, 131–141. Doi 10.1007/s11557-010-0682-5

- Miettinen O, Larsson E, Sjökvist E, Larsson KH. 2012 Comprehensive taxon sampling reveals unaccounted diversity and morphological plasticity in a group of dimitic polypores (Polyporales, Basidiomycota). Cladistics 28, 251–270. Doi 10.1111/j.1096-0031.2011.00380.x
- Miettinen O, Larsson KH, Spirin V. 2019 *Hydnoporia*, an older name for *Pseudochaete* and *Hymenochaetopsis*, and typification of the genus *Hymenochaete* (Hymenochaetales, Basidiomycota). Fungal Systematics and Evolution 4, 77–96. Doi 10.3114/fuse.2019.04.07
- Miettinen O, Niemela T. 2018 Two new temperate polypore species of *Skeletocutis* (Polyporales, Basidiomycota). Annales Botanici Fennici 55, 195–206. Doi 10.5735/085.055.0401
- Miettinen O, Spirin V, Vlasák J, Rivoire B et al. 2016 Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota). MycoKeys 17, 1–46. Doi 10.3897/mycokeys.17.10153
- Miller MA, Pfeiffer W, Schwartz T. 2012 The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. Association Computer Machine 39: 1–8. Doi 10.1145/2335755.2335836
- Miller SL, Larsson E, Larsson KH, Verbeken A et al. 2006 A phylogeny for kingdom fungi (deep hypha) perspectives in the new Russulales. Mycologia 98, 960–970. Doi 10.1080/15572536.2006.11832625
- Moreno G, Blanco MN, Olariaga I, Checa J. 2007 *Climacodon pulcherrimus*, a badly known tropical species, present in Europe. Cryptogamie Mycologie 281, 3–11.
- Murrill WA. 1907 Polyporaceae. North American Flora 9: 1–131
- Nakasone KK. 1990 Cultural studies and identification of wood-inhabiting Corticiaceae and selected Hymenomycetes from North America. Mycologia Memoirs 15, 1–412.
- Nakasone KK. 1996 Morphological and molecular studies on *Auriculariopsis albomellea* and *Phlebia albida* and a reassessment of *A. ampla*. Mycologia 88, 762–775. Doi 10.1080/00275514.1996.12026714
- Nakasone KK. 2006 *Dendrothele griseocana* (Corticiaceae) and related taxa with hyphal pegs. Nova Hedwigia 83, 99–108. Doi 10.1127/0029-5035/2006/0083-0099
- Nakasone KK. 2007 Morphological and molecular studies on *Resinicium* s. str. Canadian Journal of Botany 85, 420–436.
- Nakasone KK, Burdsall JHH. 2011 The genus *Dendrothele* (Agaricales, Basidiomycota) in New Zealand. New Zealand Journal of Botany 49, 107–131. Doi 10.1080/0028825X.2010.512636
- Niego AGT, Lambert C, Mortimer P, Thongklang N et al. 2023 The contribution of fungi to the global economy. Fungal Diversity 121, 95–137. Doi 10.1007/s13225-023-00520-9
- Nilsson RH, Hallenberg N. 2003 Phylogeny of the *Hypochnicium punctulatum* complex as inferred from ITS sequence data. Mycologia 95, 54–60. Doi 10.2307/3761961
- Nilsson RH, Hallenberg N, Nordén B, Maekawa N et al. 2003 Phylogeography of *Hyphoderma* setigerum (Basidiomycota) in the Northern Hemisphere. Mycological Research 107, 645–652. Doi 10.1017/S0953756203007925
- Núñez M, Ryvarden L. 2001 East Asian polypores 2. Synopsis Fungum 14, 165–522.
- Olariaga I, Huhtinen S, Læssøe T, Petersen JH et al. 2020 Phylogenetic origins and family classification of typhuloid fungi, with emphasis on *Ceratellopsis*, *Macrotyphula* and *Typhula* (Basidiomycota). Studies in Mycology 96, 155–184. Doi 10.1016/j.simyco.2020.05.003
- Ordynets A, Liebisch R, Lysenko L, Scherf D et al. 2020 Morphologically similar but not closely related: the long-spored species of *Subulicystidium* (Trechisporales, Basidiomycota). Mycological Progress 19, 691–703. Doi 10.1007/s11557-020-01587-3
- Ordynets A, Scherf D, Pansegrau F, Denecke J et al. 2018 Short-spored *Subulicystidium* (Trechisporales, Basidiomycota): high morphological diversity and only partly clear species boundaries. MycoKeys 35, 41–99. Doi 10.3897/mycokeys.35.25678
- Ortiz-Santana B, Lindner DL, Miettinen O, Justo A et al. 2013 A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales). Mycologia 105, 1391–1411. Doi 10.3852/13-051
- Park JH, Pavlov IN, Kim MJ, Park MS et al. 2020 Investigating wood decaying fungi giversity in Central Siberia, Russia using ITS sequence analysis and interaction with host trees. Sustainability 12(6), 2535. Doi 10.3390/su12062535.
- Parmasto E. 1968 Conspectus Systematis Corticiacearum. Institutum Zoologicum et Botanicum Academiae Scientiarum R.P.S.S, Tartu, Pp. 1–261.
- Patouillard N. 1900 Essai taxonomique sur les familles et les genres des Hyménomycètes. 1–184.
- Paulus B, Hallenberg N, Buchanan PK, Chambers GK. 2000 A phylogenetic study of the genus Schizopora (Basidiomycota) based on ITS DNA sequences. Mycological Research 104, 1155–1163. Doi 10.1017/S0953756200002720
- Paulus B, Nilsson H, Hallenberg N. 2007 Phylogenetic studies in *Hypochnicium* (Basidiomycota), with special emphasis on species from New Zealand. New Zealand Journal of Botany 45, 139–150. Doi 10.1080/00288250709509709
- Persoon CH. 1794 Neuer versuch einer systematischen eintheilung der schwämme. Neues Magazin für die Botanik in ihrem ganzen Umfange 1, 63–80.
- Petersen JH. 1996 Farvekort. The Danish mycological societýs colour-chart. Foreningen til Svampekundskabens Fremme Greve. Pp. 1–6.
- Pilát A. 1936 Additamenta ad floram Sibiriae, Asiae centralis orientalisque mycologicam. Pars quarta. Bulletin Trimestriel de la Société Mycologique de France 52, 305–336.
- Qian LS, Chen JH, Deng T, Sun H. 2020 Plant diversity in Yunnan: Current status and future directions. *Plant Diversity* 42, 281–291. Doi 10.1016/j.pld.2020.07.006
- Qu MH, Wang DQ, Zhao CL. 2022 A phylogenetic and taxonomic study on *Xylodon* (Hymenochaetales): focusing on three new *Xylodon* species from Southern China. Journal of Fungi 8, 1–18. Doi 10.3390/jof8010035
- Qu MH, Zhao CL. 2022 *Xylodon flocculosus* sp. nov. from Yunnan, China. Mycotaxon 137, 189–201. Doi 10.5248/137.189
- Rehner SA, Buckley E. 2005 A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to *Cordyceps teleomorphs*. Mycologia 97, 84–98. Doi 10.3852/mycologia.97.1.84
- Riebesehl J, Langer E. 2017 Hyphodontia s.l. (Hymenochaetales, Basidiomycota): 35 new combinations and new keys to all 120-current species. Mycological Progress 16, 637–666. Doi 10.1007/s11557-017-1299-8
- Riebesehl J, Yurchenko E, Nakasone KK, Langer E et al. 2019 Phylogenetic and morphological studies in *Xylodon* (Hymenochaetales, Basidiomycota) with the addition of four new species. MycoKeys 47, 97–137. Doi 10.3897/mycokeys.47.31130
- Ronquist F, Teslenko M, van der Mark P, Ayres DL et al. 2012 Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542. Doi 10.1093/sysbio/sys029
- Rosenthal LM, Larsson KH, Branco S, Chung JA et al. 2017 Survey of corticioid fungi in North American pinaceous forests reveals hyper diversity, underpopulated sequence databases, and species that are potentially ectomycorrhizal. Mycologia 109, 115–127. Doi 10.1080/00275514.2017.1281677
- Runnel K, Miettinen O, Lohmus A. 2021 Polypore fungi as a flagship group to indicate changes in biodiversity – a test case from Estonia. IMA Fungus 12, 1–31. Doi 10.1186/s43008-020-00050-y
- Ryu SM, Nguyen QN, Lee S, Kwon H et al. 2021 Chemical constituents from basidiomycete *Basidioradulum radula* culture medium and their cytotoxic effect on human prostate cancer DU-145 cells. Bioorganic Chemistry 114, 105064. Doi 10.1016/j.bioorg.2021.105064
- Ryvarden L. 1991 Genera of polypores: nomenclature and taxonomy. Synopsis Fungorum 5, 1– 363.
- Ryvarden L, Melo I. 2014 Poroid fungi of Europe. Synopsis Fungorum 31, 1–455.
- Ryvarden L, Hjortstam K, Iturriaga T. 2005 Studies in corticioid fungi from Venezuela II (Basidiomycotina, Aphyllophorales). Synopsis Fungorum 20, 42–78.

- Schoch CL, Robbertse B, Robert V, Vu D et al. 2014 Finding needles in haystacks: linking scientific names, reference specimens and molecular data for fungi. Database (Oxford) Doi 10.1093/database/bau061.
- Semwal KC, Bhatt VK. 2019 A report on diversity and distribution of macrofungi in the Garhwal Himalaya, Uttarakhand, India. Biodiversity Research Conservation 53, 7–32. Doi 10.2478/biorc-2019-0002.
- Shen LL, Wang M, Zhou JL, Cui BK et al. 2019 Taxonomy and phylogeny of *Postia*. Multi-gene phylogeny and taxonomy of the brown-rot fungi: *Postia* (Polyporales, Basidiomycota) and related genera. Persoonia 42, 101–126. Doi 10.3767/persoonia.2019.42.05
- Shen S, Liu SL, Zhou LW. 2023 Taxonomy of *Hyphodermella*: a case study to show that simple phylogenies cannot always accurately place species in appropriate genera. IMA Fungus 14, 11. Doi 10.1186/s43008-023-00116-7
- Si J, Zhang YZ, Liang JQ, Li HJ. 2023 Morphology and phylogeny identify two new species and one new subspecies of *Podoscypha* from Yunnan Province, Southwest China. Frontiers in Microbiology 14, 1151365. Doi 10.3389/fmicb.2023.1151365
- Song J, Sun YF, Ji X, Dai YC et al. 2018 Phylogeny and taxonomy of *Laetiporus* (Basidiomycota, Polyporales) with descriptions of two new species from western China. MycoKeys 37, 57–71. Doi 10.3897/mycokeys.37.26016
- Stalpers J, Redhead S, May TW, Rossman AY et al. 2021 Competing sexual-asexual generic names in Agaricomycotina (Basidiomycota) with recommendations for use. IMA Fungus 1, 1–31. Doi 10.1186/s43008-021-00061-3
- Swofford DL. 2002 PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.
- Taylor JW, Jacobson DJ, Kroken S, Kasug T et al. 2000 Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31, 21–32. Doi 10.1006/fgbi.2000.1228
- Telleria MT, Dueñas M, Beltrán-Tejera E, Rodríguez-Armas JL et al. 2012 A new species of *Hyphoderma* (Meruliaceae, Polyporales) and its discrimination from closely related taxa. Mycologia 104, 1121–1132. Doi 10.3852/11-344
- Telleria MT, Dueñas M, Melo I, Hallenberg N et al. 2010a A re-evaluation of *Hypochnicium* (Polyporales) based on morphological and molecular characters. Mycologia 102, 1426–1436. Doi 10.3852/09-242
- Telleria MT, Dueñas M, Melo I, Martín MP. 2010b Morphological and molecular studies of *Hyphodermella* in the Western Mediterranean Area. Mycological Progress 9, 585–596. Doi 10.1007/s11557-010-0666-5
- MT, Melo I, M, KH 2013 Telleria Dueñas Larsson et al. _ Molecular analyses confirm Brevicellicium in Trechisporales. IMA Fungus 4. 21–28. Doi 10.5598/imafungus.2013.04.01.03
- Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN et al. 2017 Fungal Diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 83, 1–261. Doi 10.1007/s13225-017-0378-0
- Tomšovský M, Menkis A, Vasaitis R. 2010 Phylogenetic relationships in European *Ceriporiopsis* species inferred from nuclear and mitochondrial ribosomal DNA sequences. Fungal Biology 114, 350–358. Doi 10.1016/j.funbio.2010.02.004
- Tuo YL, Rong N, Hu JJ, Zhao GP et al. 2022 Exploring the relationships between macrofungi diversity and major environmental factors in Wunvfeng National Forest Park in Northeast China. Journal of Fungi 8(2), 98. Doi 10.3390/jof8020098
- Varga T, Krizsán K, Földi C, Dima B et al. 2019 Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology & Evolution 3, 668–678. Doi 10.1038/s41559-019-0834-1
- Viner I, Miettinen O. 2022 *Lyomyces denudatus*, a new species with a disjunct distribution. Lilloa 59, 377–385. Doi 10.30550/j.lil/2022.59.S/2022.09.14

- Viner I, Spirin V, Zíbarová L, Larsson KH. 2018 Additions to the taxonomy of Lagarobasidium and Xylodon (Bymenochaetales, Basidiomycota). Mycokeys 23, 65–90. Doi 10.3897/mycokeys.41.28987
- Vojvodic M, Pešić B, Mitrović P, Vico I et al. 2023 *Waitea circinata* var. zeae: causing root rot of cabbage and oilseed rape. Biljni lekar 51, 585–593. Doi 10.5937/BiljLek2304585V
- Vu D, Groenewald M, de Vries M, Gehrmann T et al. 2019 Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92, 135– 154. Doi 10.1016/j.simyco.2018.05.001
- Wang DQ, Zhao CL. 2021a Morphological and phylogenetic evidence for recognition of two new species of *Phanerochaete* from East Asia. Journal of Fungi 7, 1063. Doi 10.3390/jof7121063
- Wang H, Gu ZR, Zhao CL. 2021a *Hyphodermella zixishanensis* (Polyporales, Basidiomycota), a new species with reddish hymenial surface. Nordic Journal of Botany 39, e03329. Doi 10.1111/njb.03329
- Wang H, He X, Zhao CL. 2020 *Scytinostroma yunnanense* sp. nov. (Russulales, Basidiomycota) evidenced by morphological characteristics and phylogenetic analyses in China. Phytotaxa 451, 145–153. Doi 10.11646/phytotaxa.451.2.4
- Wang H, Zhao CL. 2021b Hyphodermella aurantiaca sp. nov. (Polyporales, Basidiomycota) as evidenced by morphological characters and phylogenetic analyses. Annales Botanici Fennici 58, 61–68. Doi 10.5735/085.058.0110
- Wang JH, Cai YF, Zhang L, Xu CK et al. 2018a Species richness of the family Ericaceae along an elevational gradient in Yunnan, China. Forests 9(9), 511. Doi 10.3390/f9090511
- Wang XH, Das K, Horman J, Antonín V et al. 2018b Fungal biodiversity profiles 51–60. Cryptogamie Mycologie 39, 211–257. Doi 10.7872/crym/v39.iss2.2018.211
- Wang XW, Liu SL, Zhou LW. 2023 An updated taxonomic framework of Hymenochaetales (Agaricomycetes, Basidiomycota). Mycosphere 14, 452–496. Doi 10.5943/mycosphere/14/1/6
- Wang XW, May TW, Liu SL, Zhou LW. 2021b Towards a natural classification of *Hyphodontia* sensu lato and the trait evolution of basidiocarps within Hymenochaetales (Basidiomycota). Journal of Fungi 7, 1–76. https://www.mdpi.com/2309-608X/7/6/478
- Wang Y, Liu S, Ji X, Sun YF et al. 2021c Species diversity and floristic composition of polypores in the southern parts of Hengduan Mountains, Southwest China. Mycosystema 40, 2599– 2619. Doi 10.13346/j.mycosystema.210209
- Wang Z, Binder M, Dai YC, Hibbett DS. 2004 Phylogenetic relationships of *Sparassis* inferred from nuclear and mitochondrial ribosomal DNA and RNA polymerase sequences. Mycologia 95, 1008–1012. Doi 10.2307/3762086
- Westphalen MC, Motato-Vásquez V, Tomšovský M, Gugliotta AM. 2021 Additions to the knowledge of hydnoid Steccherinaceae: *Cabalodontia*, *Etheirodon*, *Metuloidea*, and *Steccherinum*. Mycologia 113, 1–16. Doi 10.1080/00275514.2021.1894536
- Westphalen MC, Rajchenberg M, Tomšovský M, Gugliotta AM. 2018 A re-evaluation of neotropical Junghuhnia s. lat. (Polyporales, basidiomycota) based on morphological and multigene analyses. Persoonia 41, 130–141. Doi 10.3767/persoonia.2018.41.07
- Westphalen MC, Tomšovský M, Gugliotta AM, Rajchenberg M. 2019 An overview of *Antrodiella* and related genera of Polyporales from the Neotropics. Mycologia 111, 813–831. Doi 10.1080/00275514.2019.1633895
- Westphalen MC, Tomšovský M, Rajchenberg M, Gugliotta AM et al. 2016 Morphological and phylogenetic studies of two new neotropical species of *Loweomyces* (Polyporales, Basidiomycota). Mycological Progress 15, 967–975. Doi 10.1007/s11557-016-1223-7
- White TJ, Bruns T, Lee S, Taylor JW et al. 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. (eds), PCR protocols: A guide to methods and applications. Academic Press, San Diego 315–322. Doi 10.1016/B978-0-12-372180-8.50042-1

- Wijayawardene NN, Hyde KD, Al-Ani LKT, Sanchez-Garcia M et al. 2020 Outline of fungi and fungus-like taxa. Mycosphere 11, 1060–1456. Doi 10.5943/mycosphere/11/1/8
- Wu F, Yuan Y, Malysheva V, Du P et al. 2014a Species clarification of the most important and cultivated *Auricularia* mushroom "Heimuer": evidence from morphological and molecular data. Phytotaxa 186, 241–253. Doi 10.11646/phytotaxa.186.5.1
- Wu F, Yuan Y, Chen JJ, Cui BK et al. 2020 Terrestriporiaceae fam. nov., a new family of Russulales (Basidiomycota). Mycosphere 11(1), 2755–2766. Doi 10.5943/mycosphere/11/1/21
- Wu F, Yuan Y, Zhao CL. 2015 Porpomyces submucidus (Hydnodontaceae, Basidiomycota), a new species from tropical China based on morphological and molecular evidence. Phytotaxa 230, 61–68. Doi 10.11646/phytotaxa.230.1.5
- Wu F, Zhou LW, Vlasák J, Dai YC. 2022 Global diversity and systematics of Hymenochaetaceae with poroid hymenophore. Fungal Diversity 113, 1–192. Doi 10.1007/s13225-021-00496-4
- Wu F, Zhou LW, Yang ZL, Bau T et al. 2019 Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Diversity 98(1), 1–76. Doi 10.1007/s13225-019-00432-7
- Wu G, Feng B, Xu JP, Zhu XT et al. 2014b Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Diversity 69, 93–115. Doi 10.1007/s13225-014-0283-8
- Wu G, Li YC, Zhu XT, Zhao K et al. 2016 One hundred noteworthy boletes from China. Fungal Diversity 81, 25–188. Doi 10.1007/s13225-016-0375-8
- Wu SH. 1990 The Corticiaceae (Basidiomycetes) subfamilies Phlebioideae, Phanerochaetoideae and Hyphodermoideae in Taiwan. Acta Botanica Fennica 142, 1–123.
- Wu SH. 1997 New species and new records of *Hyphoderma* (Basidiomycotina) from Taiwan. Botanical Bulletin of the Academia Sinica (Taipei) 38, 63–72.
- Wu SH. 2001 Three new species of *Hyphodontia* with poroid hymenial surface. Mycologia 93, 1019–1025. Doi 10.2307/3761766
- Wu SH, Chen CC, Wei CL. 2018a Three new species of *Phanerochaete* (Polyporales, Basidiomycota). MycoKeys 41, 91–106. Doi 10.3897/mycokeys.41.29070
- Wu YX, Dong JH, Zhao CL. 2021a Steccherinum puerense and S. rubigimaculatum spp. nov. (Steccherinaceae, polyporales), two new species from Southern China. Nova Hedwigia 113, 243–258. Doi 10.1127/nova hedwigia/2021/0636
- Wu YX, Wu JR, Zhao CL. 2021b Steccherinum tenuissimum and S. xanthum spp. nov. (Polyporales, basidiomycota): new species from China. PloS One 16, e0244520. Doi 10.1371/journal.pone.0244520
- Wu ZQ, Shen S, Luo KY, Wang ZH et al. 2017 Morphological and molecular identification of a new species of *Atraporiella* (Polyporales, basidiomycota) in China. Phytotaxa 332, 31–40. Doi 10.11646/phytotaxa.332.1.3
- Wu ZQ, Xu TM, Shen S, Liu XF et al. 2018b *Elaphroporia ailaoshanensis* gen. et sp. nov. in Polyporales (Basidiomycota). MycoKeys 29, 81–95. Doi 10.3897/mycokeys.29.22086
- Wu ZY. 1980 Vegetation in China. Science Press, Beijing.
- Wu ZY. 1987 Vegetation in Yunnan. Science Press, Beijing.
- Xiong HX, Dai YC, Wu SH. 2009 Three new species of *Hyphodontia* from Taiwan. Mycological Progress 8, 165–169. Doi 10.1007/s11557-009-0587-3
- Xu J, Guan QX, Zhao CL. 2020a *Peniophorella cremea* sp. nov. from China. Phytotaxa 464, 175–182. Doi 10.11646/phytotaxa.464.2.4
- Xu TM, Zeng YF, Cheng YH, Zhao CL. 2020b Phlebiopsis lacerata sp. nov. (Polyporales, Basidiomycota) from Southern China. Phytotaxa 440, 268–280. Doi 10.11646/phytotaxa.440.4.2
- Xu Y, Chen Y, Dang P, Jiang X et al. 2023 Decay of fallen wood and elevation affects soil fungal community assembly and indirectly controls community diversity. Applied Soil Ecology 182, 104683. Doi 10.1016/j.apsoil.2022.104683

- Xu YL, Cao YF, Nakasone KK, Chen CC et al. 2020c Taxonomy and phylogeny of *Phanerochaete* sensu stricto (Polyporales, Basidiomycota) with emphasis on Chinese collections and descriptions of nine new species. Mycosphere 11, 1527–1552. Doi 10.5943/mycosphere/11/1/12
- Yan S, Zhong M, Luo BQ, Li W. 2021 Innovation-driven high-level conservation of biodiversity in Yunnan. Journal of West China Forestry Science 50, 5–8. Doi 10.16473/j.carolcarrollnkixblykx1972.2021.05.002
- Yang J, Dai LD, He SH. 2016 Hymenochaetopsis nom. nov. proposed to replace Pseudochaete (Hymenochaetales, Basidiomycota) with descriptions of H. laricicola sp. nov and H. gigasetosa new to China. Mycological Progress 15, 1–8. Doi 10.1007/s11557-015-1153-9
- Yang M, Zhang J, Bai JW, Guo JG et al. 2021 Species diversity of macrofungi in Wuling Mountain National Nature Reserve. Biodiversity Science 29, 1229–1235. Doi 10.17520/biods.2021020
- Yang Y, Li R, Jiang Q, Zhou H et al. 2024 Phylogenetic and taxonomic analyses reveal three new wood-inhabiting fungi (Polyporales, Basidiomycota) in China. Journal of Fungi 10(1), 55. Doi 10.3390/jof10010055
- Yang Y, Li R, Liu CM, Zhao CL. 2023 Morphological and molecular identification for two new species of wood-inhabiting macrofungi (Basidiomycota) from Yunnan-Guizhou Plateau, China. Phytotaxa 591, 1–18. Doi 10.11646/phytotaxa.591.1.1
- Yu HL, Wang TJ, Skidmore A, Heurich M et al. 2021a The critical role of tree species and human disturbance in determining the macrofungal diversity in Europe. Global Ecology and Biogeography 30(10), 2084–2100. Doi 10.1111/geb.13372
- Yu J, Cai J, Liu HG, Zhao CL et al. 2023a Molecular systematics and taxonomy reveal three new taxa in *Phanerochaete* (Phanerochaetaceae, Polyporales) from the Yunnan–Guizhou plateau, East Asia. Mycological Progress 22, 1–13. Doi 10.1007/s11557-023-01903-7
- Yu J, Lai J, Neal BM, White BJ et al. 2023b Genomic diversity and phenotypic variation in fungal decomposers involved in bioremediation of persistent organic pollutants. Journal of Fungi 9, 418. Doi 10.3390/jof9040418
- Yu J, Wang XW, Liu SL, Shen S et al. 2021b Taxonomy and phylogeny of *Resinicium* sensu lato from Asia-Pacific revealing a new genus and five new species (Hymenochaetales, Basidiomycota). IMA Fungus 12, 19. Doi 10.1186/s43008-021-00071-1
- Yuan HS, Lu X, Qin WM. 2019 Molecular and morphological analyses separate Junghuhnia pseudocrustacea sp. nov. (Basidiomycota) from Junghuhnia crustacea complex. Nova Hedwigia 108, 255–264. Doi 10.1127/nova_hedwigia/2018/0497
- Yusran Y, Erniwati E, Wahyuni D, Ramadhanil R et al. 2021 Diversity of macro fungus across three altitudinal ranges in Lore Lindu National Park, Central Sulawesi, Indonesia and their utilization by local residents. Biodiversitas 22, 199–210. Doi 10.13057/biodiv/d220126
- Yurchenko E, Riebesehl J, Langer E. 2017 Clarification of Lyomyces sambuci complex with the descriptions of four new species. Mycological Progress 16, 865–876. Doi 10.1007/s11557-017-1321-1
- Yurchenko E, Wu SH. 2016 A key to the species of *Hyphodontia* sensu lato. MycoKeys 12, 1–27. Doi 10.3897/mycokeys.12.7568
- Yurchenko E, Riebesehl J, Langer E. 2020a Fasciodontia gen. nov. (Hymenochaetales, Basidiomycota) and the taxonomic status of *Deviodontia*. Mycological Progress 19, 171–184. Doi 10.1007/s11557-019-01554-7
- Yurchenko E, Wu SH, Maekawa N. 2020b Three new species of *Peniophorella* (Basidiomycota) from East Asia. Nova Hedwigia 111, 473–495. Doi 10.1127/nova_hedwigia/2020/0598
- Yurchenko E, Wu SH. 2014 *Hyphoderma formosanum* sp. nov. (Meruliaceae, Basidiomycota) from Taiwan. Sydowia 66, 19–23.
- Yurchenko E, Xiong HX, Wu SH. 2013 Four new species of Hyphodontia (Xylodon s.s. Hjortstam & Ryvarden, Basidiomycota) from Taiwan. Nova Hedwigia 96, 545–558. Doi 10.1127/0029-5035/2013/0092

- Zhang XJ, Yuan Q, Su JQ, Zhao CL. 2023 Diversity of wood-decaying fungi in Zixishan area (Hengduan Mountains), Yunnan Province, China. Phytotaxa 612(2), 113–138. Doi 10.11646/phytotaxa.612.2.1
- Zhao CL, Chen H, He SH, Dai YC. 2016a *Radulotubus resupinatus* gen. et sp. nov. with a poroid hymenophore in Pterulaceae (Agaricales, Basidiomycota). Nova Hedwigia 103, 265–278. Doi 10.1127/nova_hedwigia/2016/0350
- Zhao CL, Cui BK, Song J, Dai YC. 2015 Fragiliporiaceae, a new family of Polyporales (Basidiomycota). Fungal Diversity 70, 115–126. Doi 10.1007/s13225-014-0299-0
- Zhao CL, Cui BK, Steffen KT. 2016b Yuchengia, a new polypore genus segregated from Perenniporia (Polyporales) based on morphological and molecular evidenc. Nord J Bot 31, 331–338. Doi 10.1111/j.1756-1051.2012.00003.x
- Zhao CL, Liu XF, Ma X. 2019 *Phlebiopsis yunnanensis* sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Nova Hedwigia 108, 265– 279. Doi 10.1127/nova_hedwigia/2018/0508
- Zhao CL, Qu MH, Huang RX, Karunarathna SC. 2023a Multi-Gene phylogeny and taxonomy of the wood-rotting fungal genus *Phlebia* sensu lato (Polyporales, Basidiomycota). Journal of Fungi 9, 320. Doi 10.3390/jof9030320
- Zhao CL, Ren GJ, Wu F. 2017a A new species of *Hyphodermella* (Polyporales, Basidiomycota) with a poroid hymenophore. Mycoscience 58, 452–456. Doi 10.1016/j.myc.2017.06.0071
- Zhao CL, Wu ZQ. 2017 *Ceriporiopsis kunmingensis* sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Mycological Progress 16: 93–100. Doi 10.1007/s11557-016-1259-8
- Zhao RL, Li GJ, Sánchez-Ramírez S, Stata M et al. 2017b A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. Fungal Diversity 84, 43–74. Doi 10.1007/s13225-017-0381-5
- Zhao YN, He SH, Nakasone KK, Wasantha-Kumara KL et al. 2021 Global phylogeny and taxonomy of the wood-decaying fungal genus *Phlebiopsis* (Polyporales, Basidiomycota). Frontiers in Microbiology 12, 1–20. Doi 10.3389/fmicb.2021.622460
- Zhou LW, Dai YC. 2012 Recognizing ecological patterns of wood-decaying polypores on gymnosperm and angiosperm trees in northeast China. Fungal Ecology 5(2), 230–235. Doi 10.1016/j.funeco.2011.09.005
- Zhou LW, Hao ZQ, Wang Z, Wang B et al. 2011 Comparison of ecological patterns of polypores in three forest zones in China. Mycology 2(4), 260–275. Doi 10.1080/21501203.2011.602726
- Zhou LW, Nakasone KK, Burdsall HHJ, Ginns J et al. 2016 Polypore diversity in North America with an annotated checklist. Mycological Progress 15(7), 771–790. Doi 10.1007/s11557-016-1207-7
- Zhou LW, Ghobad-Nejhad M, Tian XM, Wang YF et al. 2022 Current status of 'Sanghuang' as a group of medicinal mushrooms and their perspective in industry development. Food Reviews International 38, 589–607. Doi 10.1080/87559129.2020.1740245
- Zhou LW, May TW. 2023 _ Fungal taxonomy: current status and research agendas for the interdisciplinary and globalisation era. Mycology 14(1), 52–59. Doi 10.1080/21501203.2022.2103194
- Zhou LW, Qin WM. 2012 A new species of *Skeletocutis* on bamboo (Polyporaceae) in tropical China. Mycotaxon 119, 345–350. Doi 10.5248/119.345
- Zhu H. 2022 Study on vegetation diversity in Yunnan Province. Journal of Southwest Forestry University (Natural Science) 42, 1–12. Doi 10.11929/j.swfu.202105007
- Zmitrovich IV. 2018 Conspectus systematis Polyporacearum v. 1.0. Folia Cryptogamica Petropolitana 6, 1–145.
- Zou L, Zhang XL, Deng YL, Zhao CL. 2022 Four new wood-inhabiting fungal species of Peniophoraceae (Russulales, Basidiomycota) from the Yunnan-Guizhou Plateau, China. Journal of Fungi 8(11), 1227. Doi 10.3390/jof8111227