Phytotaxa

Morphological and molecular identification for two new species of woodinhabiting macrofungi (Basidiomycota) from Yunnan-Guizhou Plateau, China

YANG YANG, RONG LI, CHAOMAO LIU, CHANGLIN ZHAO

1-18

Phoeoisaria ellipsoidea (Pieurotheciaceae, Pieurotheciales, Sordariomycetes), a new lignicolous freshwater fungus from Xishuangbanna, Yunnan Province, China JUN-XIAN YANG, HUANG ZHANG, LIN WANG, RONG ZHU, WEI DONG, SHOU-YUE

@ PDF/A (4MB)

Nomenclature and typifications in Celmisia (Asteraceae: Astereae): The New Zealand endemic subgenera Caespitosoe, Glandulosoe, and Lignosae

PATRICIO SALDIVIA

31:45

Hypholome himologense, a new and noteworthy species from the Himalayan moist temperate forests of Pakistan

MISBAH AYYUB, ABDUL REHMAN NIAZI

46:54

The identities of Millettia pseudorocemosa and M. pulchra var. munnarensis (Fabaceae: Millettieae) from South India

ZHU-QIU SONG

55-63

64-70

Aspidistra phongdiensis (Asparagaceae), a new species from Central Vietnam

VU TIEN CHINH, DIEN DINH, TUAN ANH LE, QUOC TUAN DOAN, NGOC TUAN LE, VAN HUONG LE, NAM THANG TRAN, NIKOLAY A. VISLOBOKOV

@ PDF/A (1MB)

A new species Eriope orlandai (Lamiaceae) from the Chapada Diamantina of Bahia, Brazili

RAYMOND MERVYN HARLEY

71-76

♠ PDF/A (3MB)

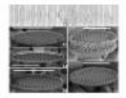
Correspondence

Nomenclatural Notes on the name Euphorbia neorugosa (Euphobiaceae)

YUN-FEI DENG

77-79

₽ PDF/A (1MB)



Trametes neovillosa (Polyporaceae), a new name for the later homonym Trametes pavania (Hook.) Ryvarden

MARIANA FERNANDES, ADRIANA DE MELLO GUGLIOTTA

80.82

PDF/A (1MB)

Pseudostaurosira ellipticolonceoloto, a new araphid diatom (Bacillariophyta) from Flanders, Belgium

CORALIE ANDRÉ, KOEN SABBE, BART VAN DE VIJVER

83-86

PDF/A (1MB)

Aster sangingensis (Asteraceae, Astereae), a synonym of Aster sangingshankus

JIA-WEI XIAO, TING LIU, WEI-PING LI, XIAN-JUN YANG

87-9

♠ PDF/A (1MB)

Article

https://doi.org/10.11646/phytotaxa.591.1.1

Morphological and molecular identification for two new species of woodinhabiting macrofungi (Basidiomycota) from Yunnan-Guizhou Plateau, China

YANG YANG^{1,3}, RONG LI^{2,4}, CHAOMAO LIU^{1,5} & CHANGLIN ZHAO^{1,2,6}*

- ¹ College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
- ² Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, P.R. China
- ⁴ = pearscus0728@163.com; https://orcid.org/0000-0003-1524-8247
- ⁵ dcm1987swkx@,163.com; https://orcid.org/0000-0003-2673-8890
- ⁶ fungichanglinz@163.com; https://orcid.org/0000-0002-8668-1075
- * Corresponding author: C.L. Zhao; e-mail: 🖃 fungichanglinz@163.com

Abstract

Two new wood-inhabiting macrofungal species, *Coniophora yunnanensis* and *Resupinatus yunnanensis* are proposed based on a combination of morphological features and molecular evidence. *Coniophora yunnanensis* is characterized by annual basidiomata with odontoid hymenophore with olivaceous to brown hymenial surfaces, a monomitic hyphal system with simple septate generative hyphae, and yellowish basidiospores. While, *R. yunnanensis* is characterized by resupinate to cupulate basidiomata with greyish to greyish-brown hymenophore, a monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores measuring as $4.5-9 \times 3.5-7 \mu m$. The phylogenetic analyses based on molecular data of ITS+nLSU sequences showed that *C. yunnanensis* and *R. yunnanensis* nested within Agaricomycetidae, in which *C. yunnanensis* clustered into the family Coniophoraceae (Boletales), and *R. yunnanensis* grouped into family Pleurotaceae (Agaricales). The phylogenetic tree derived from ITS sequences revealed that *C. yunnanensis* grouped into genus *Coniophora*, in which it grouped with *C. marmorata*. Additionally, *R. yunnanensis* clustered into genus *Resupinatus* and then was sister to *R. conspersus*.

Keywords: Asia, Macrofungi, Molecular systematics, Taxonomy, Yunnan Province

Introduction

Fungal classification of the kingdom fungi has been updated continuously, with the frequent inclusion of data from DNA sequences and by using both fresh material and cultures, mycologists re-collect historic taxa and types to accomplish taxonomy and phylogeny in 20 phyla of fungi as Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota and Zoopagomycota (Wijayawardene *et al.* 2022). Basidiomycota constitute a major phylum of the kingdom fungi and is second in number of described species to Ascomycota (Wijayawardene *et al.* 2017). Recently, approximately 60 new genera have been recognized for agarics, 40 for boletes, and 50 for bracket fungi in Basidiomycota (Wijayawardene *et al.* 2020).

The genus *Coniophora* DC. (1815: 34) belonged to the family Coniophoraceae (Boletales, Basidiomycota), typified by *C. membranacea* DC. (1815: 34), is characterized by resupinate, membranaceous basidiom with a smooth to tuberculate hymenophore with a brown hymenial surface mainly a monomitic hyphal system with clamped generative hyphae, cylindrical basidia with 4-sterigmata, ellipsoid to ovoid or fusiform, smooth, thick-walled, pale yellowish to brownish, cyanophilous, variably dextrinoid basidiospores (Bernicchia & Gorjón 2010). Based on the Index Fungorum (www.indexfungorum.org; accessed on 19 December 2022), the genus *Coniophora* has 170 specific and registered names, but the legitimate number of species has reached 30 (Gersonde 1958, Ginns & Kokko 1976, Käärik 1979, Ginns 1982, Blanco *et al.* 2009). The genus *Resupinatus* Nees ex Gray (1821: 617) belonged to the family Pleurotaceae

(Agaricales, Basidiomycota), typified by *R. applicatus* (Batsch) Gray (1821: 617), is characterized by the resupinate basidiomata with lamellate, poroid or cyphelloid hymenophore, hyphal system monomitic, thin-walled, clamped, frequently branching from clamps, basidia clavate or subclavate, 2- or 4-spored, basidiospores colorless, thin-walled, smooth, globose or subglobose to oblong or cylindric, inamyloid (Mcdonald 2015, Bijeesh *et al.* 2020). The Index Fungorum (www.indexfungorum.org; accessed on 19 December 2022) have registered 84 specific and infraspecific names in *Resupinatus*, but the legitimate number of the species has reached 45 (Gray 1821, Redhead *et al.* 1987, Singer 1975, Bodensteiner *et al.* 2004, Consiglio & Setti 2018).

Recent pioneering researches according to genera Coniophora and Resupinatus were just the prelude to the molecular systematics of Basidiomycota. Molecular systematics and biological diversification of Boletales based on the multigene dataset (nuc-ssu, nuc-lsu, 5.8S, mt-lsu, atp6) revealed that Coniophora nested into the family Coniophoraceae, in which both families Coniophoraceae and Hygrophoropsidaceae grouped together within the order Boletales, and this study suggested that the ancestor of the Boletales was a resupinate or polyporoid saprotrophic fungus, producing a brown-rot (Binder & Hibbett 2006). Taxonomic and phylogenetic revision of Coniophora showed that C. prasinoides (Bourdot & Galzin) Bourdot & Galzin (1927: 361) and C. opuntiae Tellería (1984: 26) represented two different species, and two taxa C. arachnoidea Pat. (1912: 31) and C. opuntiae were as synonyms (Blanco et al. 2009). Majority rule consensus tree from Bayesian analysis indicated that the species of *Resupinatus* grouped into resupinatus clade, in which this monophyletic group also included members of Asterotus Singer (1943: 161) and the cyphelloid genus Stigmatolemma Kalchbr. (1882: 104) (Thorn et al. 2005). The genus Resupinatus was emended to include poroid (R. porosus M.P. Martín, Lodge & Thorn (2005: 1142)) or merulioid hymenophore species as R. merulioides Redhead & Nagas. (1987: 973) (Thorn et al. 2005). Phylogeny analysis of a supermatrix of three nuclear gene regions (ITS, nLSU and TEF1) showed that two sequences known as Hohenbuehelia nigra (Schwein.) Singer (1949: 256) were placed with strong support in the sister genus Resupinatus with the speceis R. niger (Schwein.) Murrill (1915: 242) (Consiglio & Setti 2018). Phylogenetic analysis of *Resupinatus* species inferred from nrITS sequences showed that a merulioid hymenophore taxon as R. odoratus C.K. Pradeep, C. Bijeesh & A.M. Kumar (2020: 170) was reported from Kerala State, India as a saprotrophic, lignicolous fungus (Bijeesh et al. 2020).

During the investigations on the wood-inhabiting fungi, we collected two new taxa of Basidiomycota from Yunnan Province that could not be assigned to any described species. We present morphological and molecular phylogenetic evidence that supports the two new species in *Coniophora* and *Resupinatus*, based on the internal transcribed spacer (ITS) regions and the large subunit nuclear ribosomal RNA gene (nLSU) sequences of ribosomal DNA gene.

Materials and methods

Morphological studies

Fresh fruiting bodies of the fungi were collected from Chuxiong, Honghe, Pu'er and Wenshan of Yunnan Province, P.R. China. Specimens were dried in an electric food dehydrator at 40 °C, then sealed and stored in an envelope bag and deposited in the herbarium of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, P.R. China. Macromorphological descriptions are based on field notes and photos captured in the field and lab. Colour terms follow Petersen (1996). Micromorphological data were obtained from the dried specimens when observed under a light microscope following Dai *et al.* (2015). The following abbreviations were used: KOH = 5% potassium hydroxide water solution, CB = Cotton Blue, CB— acyanophilous, CB+ e cyanophilous, IKI = Melzer's reagent, IKI— = both inamyloid and indextrinoid, L = mean spore length (arithmetic average for all spores), W = mean spore width (arithmetic average for all spores), Q = variation in the L/W ratios between the specimens studied, and n = a/b (number of spores (a) measured from a given number (b) of specimens), Qm = the average of Q (arithmetic average for all spores).

Molecular procedures and phylogenetic analyses

CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd, Beijing) was used to obtain genomic DNA from dried specimens, according to the manufacturer's instructions that were slightly modified by grinding a small piece of the dried fungal specimen (30 mg) to powder with liquid nitrogen. The powder was transferred to a 1.5 mL centrifuge tube, suspended in 0.4 mL of lysis buffer, and incubated in a 65 °C water bath for 60 min. After that, 0.4 mL phenol-chloroform (24:1) was added to each tube and the suspension was shaken vigorously. After centrifugation at 13 thousand rpm for 5 min, 0.3 mL supernatant was transferred to a new tube and mixed with 0.45 mL binding buffer. The mixture was then transferred to an Adsorbing Column (AC) for centrifugation at 12,000 rpm for 0.5 min.

Then, 0.5 mL inhibitor removal fluid was added to the AC for centrifugation at 12 thousand rpm for 0.5 min. After washing twice with 0.5 mL washing buffer, the AC was transferred to a clean centrifuge tube, and 100 mL elution buffer was added to the middle of the adsorbed film to elute the genome DNA. The internal transcribed spacer region (ITS) was amplified with primer pairs ITS5 and ITS4 (White *et al.* 1990). The nuclear large subunit region (nLSU) was amplified with primer pairs LR0R and LR7 (https://sites.duke.edu/vilgalyslab/rdna_primers_for_fungi/). The PCR procedure for ITS was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles of 94 °C for 40 s, 58 °C for 45 s, and 72 °C for 1 min; and a final extension of 72 °C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles of 94 °C for 30 s, 48 °C 1 min, and 72 °C for 1.5 min; and a final extension of 72 °C for 10 min. The PCR products were purified and directly sequenced at the Kunming Tsingke Biological Technology Limited Company, Kunming, Yunnan Province, China. All newly generated sequences were deposited in GenBank (Table 1).

TABLE 1. List of species, specimens and GenBank accession numbers of sequences used in this study. The new species are in bold.

Species name	Sample no.	GenBank accession no.		References
		ITS	LSU	_
Agrocybe praecox	AFTOL-ID 728	AY818348	AY646101	Yang et al. 2005
Amylocorticium cebennense	HHB-2808	GU187505	GU187561	Binder et al. 2010
Anomoloma bombycina	L-6240	GU187508	GU187564	Binder et al. 2010
Anthracophyllum archeri	AFTOL-ID 973	DQ404387	AY745709	Matheny et al. 2006
Armillaria mellea	AFTOL-ID 449	AY789081	AY700194	Matheny et al. 2006
Aroramyces gelatinosporus	H4010	DQ218698	DQ218524	Hosaka et al. 2008
Asterophora lycoperdoides	CBS 170.86	AF357037	_	Hofstetter et al. 2002
Athelia arachnoidea	CBS 105.18	MH854664	MH866181	Vu et al. 2019
A. epiphylla	FP-100564	GU187501	GU187558	Binder et al. 2010
Austroboletus fusisporus	HKAS75207	JX889719	JX889720	Hosen et al. 2013
Austropaxillus statuum	Pst2	HM135659	HM135709	He et al. 2019
Blastosporella zonata	TJB8371	EU708340	EU708337	Halling et al. 2007
Boletellus projectellus	AFTOL-ID 713	AY789082	AY684158	Hosen et al. 2013
Boletinellus merulioides	AFTOL-ID 575	DQ200922	AY684153	Matheny et al. 2007
Boletus edulis	Be953	AY680988	AF456816	Leonardi et al. 2005
Bondarcevomyces taxi	Dai2524	DQ534575	DQ534672	Binder & Hibbett 2000
Borofutus dhakanus	HKAS73789	JQ928606	JQ928616	Hosen et al. 2013
Bothia castanella	MB03-053	DQ867110	DQ867117	Halling et al. 2007
Calostoma cinnabarinum	AFTOL-ID 439	AY854064	AY645054	Hosen et al. 2013
Callistosporium graminicolor	AFTOL-ID 978	DQ484065	AY745702	Matheny et al. 2006
Camarophyllopsis hymenocephala	AFTOL-ID 1892	DQ484066	DQ457679	Matheny et al. 2006
Catathelasma ventricosum	AFTOL-ID 1488	DQ486686	DQ089012	Matheny et al. 2006
Ceraceomyces borealis	L-8014	GU187512	GU187570	Binder et al. 2010
Clarkeinda trachodes	xml2014104	LT716022	KY418837	Zhao et al. 2017
Clavaria zollingeri	AFTOL-ID 563	AY854071	AY639882	Matheny et al. 2006
Clitocybula atroalba	AFTOL-ID 1529	DQ192179	DQ457659	Matheny et al. 2006
Clitopilus prunulus	AFTOL-ID 522	DQ202272	AY700181	Matheny et al. 2006
Chalciporus piperatus	HKAS50214	JQ928610	JQ928621	Hosen et al. 2013
Chlorophyllum agaricoides	AFTOL-ID 440	DQ200928	AY700187	Matheny et al. 2007
Coniophora arida	FP-104367	GU187510	GU187573	Zhao et al. 2018
C. arida	He 4658	MG763875	_	Zhao et al. 2018
C. cerebella	HK 8	GU187625		Binder et al. 2010

...continued on the next page

TABLE 1. (Continued)

Species name	Sample no.	GenBank accession no.		References
		ITS	LSU	
C. cystidiophora	CBS 153.33	MH855390	_	Vu et al. 2019
C. hanoiensis	He 5197	MG763873	_	Zhao et al. 2018
C. hanoiensis	He 5202	MG763874	_	Zhao et al. 2018
C. marmorata	MUCL31667	GU187515	_	Binder et al. 2010
C. marmorata	P158	AJ518879		Schmidt et al. 2002
C. olivacea	FP-104386	GU187516	GU187572	Binder et al. 2010
C. opuntiae	AH 31855	FJ790314	_	Blanco et al. 2009
C. prasinoides	MA-Fungi 19417	AJ419197	_	He et al. 2019
C. puteana	VL298	JF440570	_	Lygis et al. 2014
C. yunnanensis	CLZhao 3517	OP901836	OP904195	Present study
C. yunnanensis	CLZhao 3594	OP901837	OP904196	Present study
Coprinellus curtus	SZMC-NL-2339	FM878016	FM876273	Nagy et al. 2011
Coprinopsis atramentaria	AFTOL-ID 1496	_	DQ457661	Matheny et al. 2006
Coprinus comatus	AFTOL-ID 626	AY854066	AY635772	Matheny et al. 2007
Corneriella bambusarum	DED5462	NR153878	NG060410	He et al. 2019
Corneroboletus indecorus	HKAS63126	_	KF112440	Wu et al. 2014
Cortinarius iodes	AFTOL-ID 285	_	AY702013	Matheny et al. 2006
Cortinarius renidens	OS582	KC842459	KC842529	He et al. 2019
Crepidotus applanatus	PBM 717	DQ202273	AY380406	Matheny et al. 2007
Cylindrobasidium laeve	AFTOL-ID 453	DQ205682	DQ234541	Matheny et al. 2007
Cystoagaricus strobilomyces	30-V-1997	AY176347	AY176348	Vellinga 2004
Dermoloma sp.	ECV4208	KU058494	KU058531	He et al. 2019
Entocybe trachyospora	ZRL20151426	LT716037	KY418852	Zhao et al. 2017
Entoloma pluteisimilis	C.20011208	_	GQ289180	Co-David et al. 2009
Flagelloscypha minutissima	CBS 823.88	AY571040	AY571006	Bodensteiner et al. 200
Flammulaster sp.	PBM3449	HQ827176	HQ827177	Matheny et al. 2014
Flammulina velutipes	AFTOL-ID 558	AY854073	AY639883	Matheny et al. 2006
Gymnopus confluens	ZRL20151148	LT716054	KY418870	Zhao et al. 2017
Gyrodontium sacchari	He4157	MG763879	MH476327	Larsson et al. 2006
G. sacchari	MUCL40589	GU187522	GU187579	Binder et al. 2010
Harrya chromapes	HKAS50527	_	KF112437	Wu et al. 2014
Hebeloma cavipes	ZRL20151612	LT716034	KY418849	Zhao et al. 2017
Hohenbuehelia atrocoerulea	AMB 18084	KU355301	KU355388	Bijeesh et al. 2020
H. grisea	MCVE 27293	KU355329	KU355394	Consiglio & Setti 2018
H. tremula	AFTOL-ID 1503	DQ182504	DQ440645	Matheny et al. 2006
Hydnomerulius pinastri	MD312	GU187523	GU187580	Binder et al. 2010
Hygrophoropsis aurantiaca	AFTOL-ID 714	AY854067	AY684156	Binder et al. 2010
Hymenagaricus taiwanensis	AFTOL-ID 1383	DQ490633	DQ457680	Matheny et al. 2006
Hypsizygus ulmarius	JM/HW 25S	EF421105	AF042584	Moncalvo et al. 2000
Jaapia argillacea	CBS:252.74	NR 119766	NG042523	Binder et al. 2010
I. ochroleuca	KHL 8433	EU118637	EU118637	Larsson 2007
Lachnella villosa	AFTOL-ID 525	DQ097362	DQ097347	Binder et al. 2006
Lamelloclavaria petersenii	SAV F-3493	NR154119	NG060318	Birkebak <i>et al.</i> 2013
Leccinum aurantiacum	HKAS57390	JQ928611	JQ928625	Hosen <i>et al.</i> 2013
	1111100,000	2 4 7 2 0 0 1 1		continued on the next n

...continued on the next page

TABLE 1. (Continued)

Species name	Sample no.	GenBank acce	ssion no.	References
		ITS	LSU	
Lentinula edodes	TMI1941		AF261557	Moncalvo et al. 2002
Lepiota cristata	ZRL20151133	LT716026	KY418841	Zhao et al. 2017
Leptosporomyces raunkiaeri	HHB-7628	GU187528	GU187588	Binder et al. 2010
Leucocoprinus fragilissimus	ZRL20151466	LT716029	KY418844	Zhao et al. 2017
Leucogyrophana mollusca	KHL 11160	EU118643	EU118643	Larsson 2007
Leucopaxillus alboalutaceus	LAS00/082	KJ417275	KJ417195	He et al. 2019
Megacollybia marginata	ZRL20151245	LT716049	KY418865	Zhao et al. 2017
Melanogaster rivularis	PAM08090514	NR132848		Rochet et al. 2010
Micropsalliota globocystis	ZRL2013465	LT716024	KY418839	Zhao et al. 2017
Mycaureola dilseae	BM17/85	DQ097364	DQ097348	Binder & Hibbett 2006
Naucoria escharoides	PBM1719		AY380405	Matheny 2005
Nolanea strictior	DUKE-JM96/10	EF421109		Hofstetter et al. 2007
Omphalotus olearius	AFTOL-ID 1718	DQ494681	DQ470816	Matheny et al. 2006
Parasola conopila	ZRL20151990	LT716064	KY418880	Zhao <i>et al</i> . 2017
Phlebopus portentosus	HKAS52855	_	JQ928622	Hosen et al. 2013
Phylloporus pelletieri	Pp1	DQ534566	AF456818	Binder & Hibbett 2006
Physalacria bambusae	CBS 712.83	DQ097367	DQ097349	Matheny et al. 2006
Piloderma fallax	S 12	GU187535	GU187591	Binder et al. 2010
Pisolithus tinctorius	AWW219	EU718114	EU718148	He et al. 2019
Pleuroflammula praestans	ZRL2015066	LT716043	KY418859	Zhao et al. 2017
Pleurotus eryngii	HIK153	HM998840	HM998804	Zervakis et al. 2014
P. ferulaginis	HIK132	HM998831	HM998794	Zervakis et al. 2014
Podoserpula ailaoshanensis	ZJL2015015	NR158915	NG060161	He et al. 2019
Porphyrellus porphyrosporus	AFTOL-ID 1779	DQ534563	DQ534643	Binder & Hibbett 2006
Porpoloma portentosum	REH5788	KJ417299	KJ417211	He et al. 2019
Psathyloma catervatim	PBM3420	HQ840663	HQ840664	Matheny et al. 2014
Pseudobaeospora sp.	ECV5553	KU058502	KU058539	He <i>et al.</i> 2019
Pseudomerulius curtisii	REH8912	GU187533	GU187589	Binder et al. 2010
Radulomyces copelandii	Dai 15061	KU535664	KU535672	Zhao et al. 2016
Radulotubus resupinatus	Cui 8383	KU535660	KU535668	Zhao et al. 2016
Resupinatus alboniger	TFB12417	KP026234	_	Petersen et al. 2015
R. alboniger	TENN62044	FJ596893	_	Hughes et al. 2009
R. applicatus	PB335	AY571059	AY571022	Bodensteiner et al. 200
R. applicatus	PDD 95777	HQ533025	_	McDonald et al. 2015
R. conspersus	C61852	AY571061	_	Bodensteiner et al. 200
R. europaeus	AMB 18076	KU355365		Consiglio & Setti 2018
R. europaeus	AMB 18078	KU355363		Consiglio & Setti 2018
R. griseopallidus	AMB 18277	MH137823	_	Bijeesh et al. 2020
R. griseopallidus	Blasco	MG553642	_	Bijeesh <i>et al.</i> 2020
R. hausknechtii	WU 7659	KU355370	_	Bijeesh <i>et al.</i> 2020
R. kavinii	AVM 3128	MG553643	_	Bijeesh <i>et al.</i> 2020
R. odoratus	TBGT17789	MT452498	_	Bijeesh <i>et al.</i> 2020
R. niger	RLG 10761	KY679146	KY679146	Consiglio & Setti 2018
R. niger	Roux 3740	KU355372		Unpublished

...continued on the next page

TABLE 1. (Continued)

Species name	Sample no.	GenBank accession no.		References
		ITS	LSU	
R. poriiformis	GT 11034	MH137825	_	Consiglio & Setti 2018
R. poriiformis	CBS 327.91	AY571062	_	Bodensteiner et al. 2004
R. porosus	PR5832	DQ017063	_	Thorn et al. 2005
R. rouxii	ACAD 7603	KU355369	_	Consiglio & Setti 2018
R. rouxii	Z+ZT 971	MH137828	_	Consiglio & Setti 2018
R. striatulus	KR-M-053702	MW035051	_	Lotz-Winter et al. 2021
R. striatulus	KR-M-0091193	MW035047	_	Lotz-Winter et al. 2021
R. taxi	MO315409	MH558280	_	Bijeesh et al. 2020
R. trichotis	AVM 3173	MH137833	_	Consiglio & Setti 2018
R. trichotis	HMJAU2150	GQ142022	_	McDonald et al. 2015
R. violaceogriseus	PDD95788	HQ533014	_	McDonald et al. 2015
R. yunnanensis	CLZhao 3802	OP901840	_	Present study
R. yunnanensis	CLZhao 7168	OP901838	_	Present study
R. yunnanensis	CLZhao 8651	OP901839	OP904197	Present study
Retiboletus griseus	HKAS59460	JQ928613	JQ928626	Hosen et al. 2013
Royoungia boletoides	ACW 4137	_	DQ534663	Binder & Hibbett 2006
Serpula lacrymans	REG 383	GU187542	GU187596	Binder et al. 2010
Simocybe serrulata	AFTOL-ID 970	DQ494696	AY745706	Matheny et al. 2006
Spongiforma thailandica	DED7873	EU685113	EU685108	Desjardin et al. 2009
Strobilomyces floccopus	AFTOL-ID 716	AY854068	AY684155	Hosen et al. 2013
Tephrocybe ambusta	CBS452.87	AF357057	_	Hofstetter et al. 2002
Tricholoma palustre	AFTOL-ID 497	DQ494699	AY700197	Matheny et al. 2006
Tubaria confragosa	AFTOL-ID 498	DQ267126	AY700190	Matheny et al. 2007
Tylopilus felleus	HKAS54926	HQ326909	HQ326933	Li et al. 2011
Veloporphyrellus alpinus	HKAS57490	JX984526	JX984537	Li et al. 2014
Verrucospora flavofusca	AFTOL-ID 655	DQ241779	DQ470825	Matheny et al. 2006
Xanthoconium stramineum	3518	_	KF030353	Nuhn et al. 2013
Xerocomellus cisalpinus	PDD94421	JQ924296	JQ924322	Wu et al. 2014
Xerula sinopudens	ZRL20151504	LT716059	KY418875	Zhao et al. 2017

Sequencher 4.6 (GeneCodes, Ann Arbor, MI, USA) was used to edit the DNA sequence. Sequences were aligned in MAFFT 7 (http://mafft.cbrc.jp/alignment/server/) using the "G-INS-I" strategy and manually adjusted in BioEdit (Hall 1999). The sequence alignment was deposited in TreeBase (submission ID 30015). Phylogenetic analyses of genera *Coniophora* and *Resupinatus* were carried out, in which sequence of *Aroramyces gelatinosporus* (J.W. Cribb) Castellano (2000: 13) retrieved from GenBank was used as outgroup in ITS+nLSU (Fig. 1) analysis following He *et al.* (2019). Sequences of *Gyrodontium sacchari* (Spreng.) Hjortstam. (1995: 186) retrieved from GenBank were used as outgroups in Fig. 2 (ITS+nLSU) and analysis following Zhao *et al.* (2018). The sequence of *Hohenbuehelia atrocoerulea* (Fr.) Singer (1951: 255) retrieved from GenBank was used as outgroup in ITS+nLSU (Fig. 3) analysis following Bijeesh *et al.* (2020).

Maximum parsimony analysis was applied to ITS and ITS+nLSU dataset sequences. Approaches to phylogenetic analysis followed Zhao and Wu (2017), and the tree construction was performed in PAUP* version 4.0b10 (Swofford 2002). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5,000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap (BT) analysis with 1,000 replicates (Felsenstein 1985). Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each Maximum Parsimonious Tree generated. Sequences were also analyzed using Maximum Likelihood (ML) with

RAxML-HPC2 through the Cipres Science Gateway (www.phylo.org; Miller *et al.* 2009). Branch support (BS) for ML analysis was determined by 1000 bootstrap replicates.

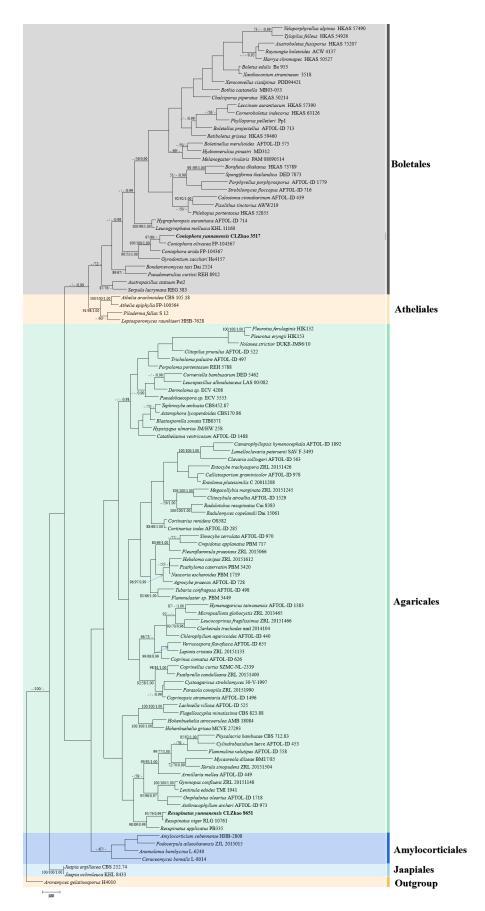
MrModeltest 2.3 (Nylander 2004) was used to determine the best-fit evolution model for each data set for Bayesian Inference (BI). BI was calculated with MrBayes 3.2.7a with a general time reversible (GTR+I+G) model of DNA substitution and a gamma distribution rate variation across sites (Ronquist *et al.* 2012). Four Markov chains were run for 2 runs from random starting trees, for 6 million generations (Fig. 1), 0.32 million generations (Fig. 2) and 2 million generations (Fig. 3) and trees were sampled every 100 generations. The first one-fourth generations were discarded as burn-in. A majority rule consensus tree of all remaining trees was calculated. Branches are labeled with maximum likelihood bootstrap values equal to or above 70%, parsimony bootstrap values equal to or above 50% and Bayesian posterior probabilities equal to or above 0.95.

Results

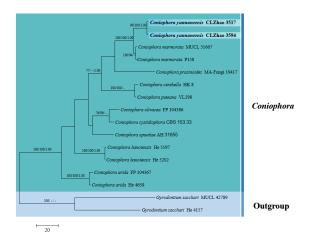
Phylogenetic analyses

The ITS+nLSU dataset (Fig. 1) included sequences from 113 fungal specimens representing 112 species within the class Agaricomycetidae and one outgroup. The dataset had an aligned length of 3261 characters, of which 1350 characters were constant, 422 were variable and parsimony-uninformative, and 1489 were parsimony-informative. Maximum parsimony analysis yielded 61 equally parsimonious trees (TL = 18023, CI = 0.2090, HI = 0.7910, RI = 0.3044, RC = 0.0636). The best model for the ITS+nLSU dataset estimated and applied in the Bayesian analysis: was GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology as MP analysis, with an average standard deviation of split frequencies = 0.015999 (BI), and the effective sample size (ESS) across the two runs is double that of the average ESS (avg ESS) = 918. The phylogenetic tree (Fig. 1) inferred from ITS+nLSU sequences revealed that *C. yunnanensis* and *R. yunnanensis* nested within Agaricomycetidae, in which *C. yunnanensis* clustered into the family Coniophoraceae (Boletales), and *R. yunnanensis* grouped into family Pleurotaceae (Agaricales).

The ITS dataset (Fig. 2) included sequences from 16 fungal specimens representing 10 species of *Coniophora* and two outgroups. The dataset had an aligned length of 748 characters, of which 469 characters were constant, 117 were variable and parsimony-uninformative, and 162 were parsimony-informative. Maximum parsimony analysis yielded 3 equally parsimonious trees (TL = 510, CI = 0.7216, HI = 0.2784, RI = 0.6595, RC = 0.4759). The best model for the ITS dataset estimated and applied in the Bayesian analysis was GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology as MP analysis, with an average standard deviation of split frequencies = 0.007274 (BI), and the effective sample size (ESS) across the two runs is double that of the average ESS (avg ESS) = 456.5. The phylogenetic tree (Fig. 2) inferred from ITS sequences revealed that *Coniophora yunnanensis* grouped into the genus *Coniophora* and closely related to *C. marmorata* Desm. (1823: 18).


The ITS dataset (Fig. 3) included sequences from 27 fungal specimens representing 17 species of *Resupinatus* and an outgroup. The dataset had an aligned length of 679 characters, of which 330 characters were constant, 72 were variable and parsimony-uninformative, and 277 were parsimony-informative. Maximum parsimony analysis yielded 1 equally parsimonious tree (TL = 1291, CI = 0.4462, HI = 0.5538, RI = 0.4936, RC = 0.2202). The best model for the ITS dataset estimated and applied in the Bayesian analysis was GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology as MP analysis, with an average standard deviation of split frequencies = 0.009024 (BI), and the effective sample size (ESS) across the two runs is double that of the average ESS (avg ESS) = 180. The phylogenetic tree (Fig. 3) inferred from ITS sequences revealed that *Resupinatus yunnanensis* clustered into genus *Resupinatus* and sister to *R. conspersus* Thorn, Moncalvo & Redhead. (2006: 1148).

Taxonomy


Coniophora yunnanensis Y. Yang & C.L. Zhao, sp. nov. Figs. 1, 2, 4, 5

MycoBank no.: MB 847019

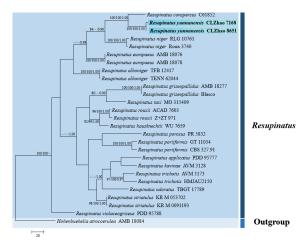

Holotype:—CHINA. Yunnan Province, Pu'er, Jingdong County, Wuliangshan National Nature Reserve, E 100°31′10″, N 24°25′07″, elev. 1500 m, on the dead bamboo, 2 October 2017, CLZhao 3594 (SWFC!), GenBank No. (ITS OP901837; nLSU OP904196).

FIGURE 1. Maximum Parsimony strict consensus tree illustrating the phylogeny of two new species and related species in Agaricomycetidae based on ITS+nLSU sequences. Branches are labeled with maximum likelihood bootstrap values equal to or above 70%, parsimony bootstrap values equal to or above 50% and Bayesian posterior probabilities equal to or above 0.95. The new species are in bold.

FIGURE 2. Maximum Parsimony strict consensus tree illustrating the phylogeny of the new species of *Coniophora* based on ITS sequences. Branches are labeled with maximum likelihood bootstrap values equal to or above 70%, parsimony bootstrap values equal to or above 50% and Bayesian posterior probabilities equal to or above 0.95.

FIGURE 3. Maximum Parsimony strict consensus tree illustrating the phylogeny of the new species of *Resupinatus* based on ITS sequences. Branches are labeled with maximum likelihood bootstrap values equal to or above 70%, parsimony bootstrap values equal to or above 50% and Bayesian posterior probabilities equal to or above 0.95.

Etymology:—yunnanensis (Lat.): refers to the locality (Yunnan Province) of the type specimen.

Basidiomata:—Annual, resupinate to effused, separable, soft ceraceous, without odor or taste when fresh, becoming hard corky upon drying, up to 10 cm long, 4 cm wide, 0.5–1 mm thick; hymenial surface odontoid, 100–500 μm long, olivaceous buff (4C4) when fresh, olivaceous buff (4C4) to greyish brown (5/6E4) drying; sterile margin indistinct and olivaceous buff (4C4).

Hyphal structure:—Hyphal system monomitic; generative hyphae with simple septa, colorless, thin-walled, rarely branched, interwoven, 2.5–6 µm in diam; IKI–, CB–, tissues unchanged in KOH.

Hymenium:—Cystidia and cystidioles absent; basidia cylindrical, constricted, $40-90 \times 5-7 \mu m$, with 4-sterigmata and a basal simple septum, basidioles dominant, in shape similar to basidia, but slightly smaller.

Basidiospores:—Ovoid to broadly ellipsoid, smooth, thick-walled, pale yellowish, with oil drops, IKI–, CB–, $(8-)8.5-12.5 \times (5.5-)6.5-8.5$ μm, L = 10.7 μm, W = 7.27 μm, Q = 1.46–1.53 (n = 60/2), Qm = 1.47.

Additional specimen examined:—CHINA. Yunnan Province, Pu'er, Jingdong County, Wuliangshan National Nature Reserve, E 100°31′10″, N 24°25′07″, elev. 1500 m, on the dead bamboo, 2 October 2017, CLZhao 3517 (SWFC!), GenBank No. (ITS OP901836; nLSU OP904195).

Notes: Morphologically, *Coniophora arida* (Fr.) P. Karst. (1868: 370), *C. hanoiensis* Pat. (1907: 76), *C. olivacea* (Fr.) P. Karst. (1879: 162), and *C. puteana* (Schumach.) P. Karst. (1803: 397) are similar to *C. yunnanensis* by having ovoid to ellipsoid basidiospores. However, *C. arida* differs from *C. yunnanensis* by its wider basidia (40–70 × 7–10 μm), and presence of the hyphal strands (Bernicchia & Gorjón 2010); *C. hanoiensis* is separated from *C. yunnanensis* by its white to yellowish-brown hymenial surface and dimitic hyphal system (Ginns 1982); *C. olivacea* is distinguished from

C. yunnanensis by smooth hymenial surface, presence of the thick-walled septate cystidia and dextrinoid basidiospores (Bernicchia & Gorjón 2010); C. puteana is separated from C. yunnanensis by having the tabular, yellowish-brown, smooth basidiomata and brownish basidiospores (Bernicchia & Gorjón 2010).

Coniophora yunnanensis resembles C. arachnoidea, C. fusispora (Cooke & Ellis) Cooke (1889: 650) and C. ladoi Tellería (1991: 236) in having a odontoid hymenial surface. However, Coniophora arachnoidea is different from C. yunnanensis by brownish hymenophore and smaller basidiospores (6–8 × 4–5 μm) (Blanco et al. 2009); C. fusispora can be delimited from C. yunnanensis by its orange-yellow to brown hymenophore and longer basidiospores (14–20 × 5–8 μm) (Bernicchia & Gorjón 2010); C. ladoi is distinguished from C. yunnanensis by small basidiospores (5.5–7.5 × 3.5–4.5 μm) (Bernicchia & Gorjón 2010).

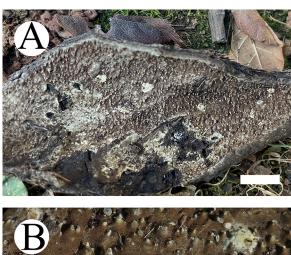
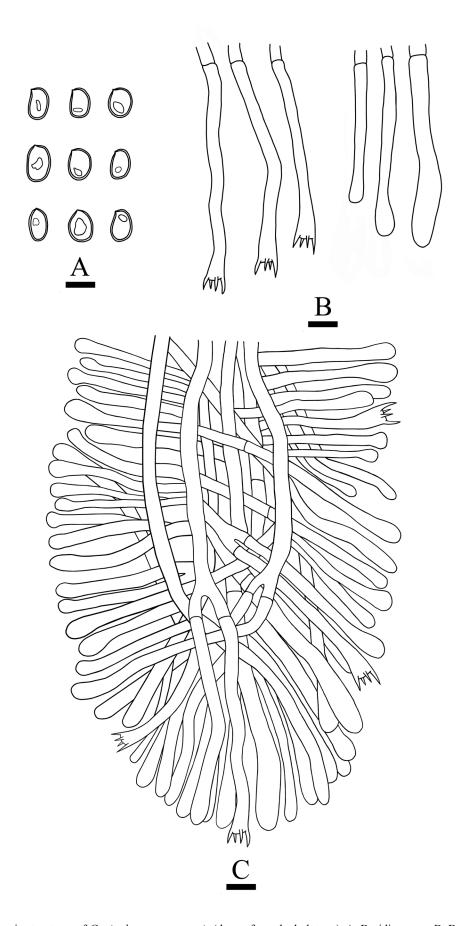


FIGURE 4. Basidiomata of *Coniophora yunnanensis*. Bars: A = 1 cm; B = 2 mm (holotype). Photos by: Yang Yang

Resupinatus yunnanensis Y. Yang & C.L. Zhao, sp. nov. Figs. 1, 3, 6, 7

MycoBank no.: MB 847020

Holotype:—CHINA. Yunnan Province, Pu'er, Jingdong County, Taizhong Township, Xujiaba, Ailaoshan Ecological Station, E 100°53′41″, N 24°23′36″, elev. 1800 m, on the fallen branch of angiosperm, 24 August 2018, CLZhao 8651 (SWFC!), GenBank No. (ITS OP901839; nLSU OP904197).


Etymology:—yunnanensis (Lat.): refers to the locality (Yunnan Province) of the type specimen.

Basidiomata:—Annual, resupinate to cupulate, soft gelatinous when fresh, fragile when drying, up to 12 cm long, 3 cm wide, 0.5 mm thick, cups globose or depressed-globose, up to 150–500 μm in diameter, aggregated in groups, 3–6 per mm, buff (4A4) to slightly brown (5B/C7), covered in a dense mat of white hairs; hymenophore cyphelloid, buff (4A4) to slightly brown (5B/C7) when fresh, greyish (19C2) to pale mouse-grey (7C2) upon drying; sterile margin indistinct and slightly brown; subiculum felty, loosely attached to the substrate and densely packed, up to 200 μm thick.

Hyphal structure:—Hyphal system monomitic; generative hyphae with clamp connections, colorless, thin-walled, branched, interwoven, 1.5–3.5 μm in diam; IKI–, CB–, tissues unchanged in KOH. presence of crystal encrusted branched hyphae with short finger-like projections at the tips.

Hymenium:—Cystidia and cystidioles absent; basidia clavate, $12-36.5 \times 4-8 \mu m$, with 4-sterigmata and with a basal clamp connection, basidioles dominant, in shape similar to basidia, but slightly smaller.

Basidiospores:—Ellipsoid, colorless, thin-walled, smooth, with oil drops, IKI–, CB–, 4.5–9(–9.5) \times 3.5–7 μm, L = 6.68 μm, W = 4.72 μm, Q = 1.32–1.71 (n = 90/3), Qm = 1.42.

FIGURE 5. Microscopic structures of *Coniophora yunnanensis* (drawn from the holotype). A. Basidiospores. B. Basidia and basidioles. C. A section of hymenium. Bars: $A-C=10 \mu m$. Drawings by: Yang Yang

FIGURE 6. Basidiomata of Resupinatus yunnanensis. Bars: A = 2 cm, B = 1 mm (holotype). Photos by: Yang Yang

Additional specimens examined:—CHINA. Yunnan Province, Pu'er, Jingdong County, Taizhong Town, Ailaoshan, E 100°51′30″, N 24°25′42″, elev. 1800 m, on the fallen branch of angiosperm, 4 October 2017, CLZhao 3802 (SWFC!), GenBank No. (ITS OP901840); Chuxiong, Zixishan Forestry Park, E 101°24′06″, N 25°03′60″, elev. 2100 m, on the trunk of angiosperm, 1 July 2018, CLZhao 7168 (SWFC!), GenBank No. (ITS OP901838).

Notes: Resupinatus alboniger (Pat.) Singer, Beih. (1977: 17), R. cinerascens (Cleland) Grgur.(1997: 47), R. hyalinus (Singer) Thorn, Moncalvo & Redhead (2006: 1148) and R. vinosolividus (Segedin) J.A. Cooper (2012: 1) resemble R. yunnanensis by having the elliptical basidiospores. However, Resupinatus alboniger is distinguished from R. yunnanensis by the brown hymenophore and irregular finger-like cystidia (23–35 × 8–10 μm) (Gonou-Zagou et al. 2011); R. cinerascens differs in R. yunnanensis by having the grayish black hymenophore and diverticulate branching cystidia (19–35.5 × 2.5–6 μm) (Mcdonald 2015); R. hyalinus is separated from R. yunnanensis by having the surface hairs and finger-like cystidia (Mcdonald 2015); R. vinosolividus differs from R. yunnanensis by having the cheilocystidia at edge of basidiomata on top surface of gills (Mcdonald 2015).

Resupinatus yunnanensis resembles R. applicatus (Batsch) Gray (1821: 617), R. huia (G. Cunn.) Thorn, Moncalvo & Redhead (2006: 1148), R. incanus (Kalchbr.) Thorn, Moncalvo & Redhead (2006: 1148) and R. poriaeformis (Pers.) Thorn, Moncalvo & Redhead (2006: 1148) in having cupulate basidiomata. However, Resupinatus applicatus is different from R. yunnanensis by having the brown to black hymenophore with a lateral pseudostipe, diverticulate with finger-like cystidia and globose to subglobose basidiospores (Mcdonald 2015); R. huia can be delimited from R. yunnanensis by its simple septa generative hyphae and oblong basidiospores (Thorn et al. 2005); R. incanus differs from R. yunnanensis by grey to black basidiomata and oblong basidiospores (Thorn et al. 2005); R. poriaeformis is distinguished from R. yunnanensis by dark brown or grey basidiomata, diverticulate cystidia, and globose to subglobose basidiospores and tan to (Thorn et al. 2005).

Discussion

In the present study, two new species, *Coniophora yunnanensis* and *Resupinatus yunnanensis* are described based on phylogenetic analyses and morphological characteristics.

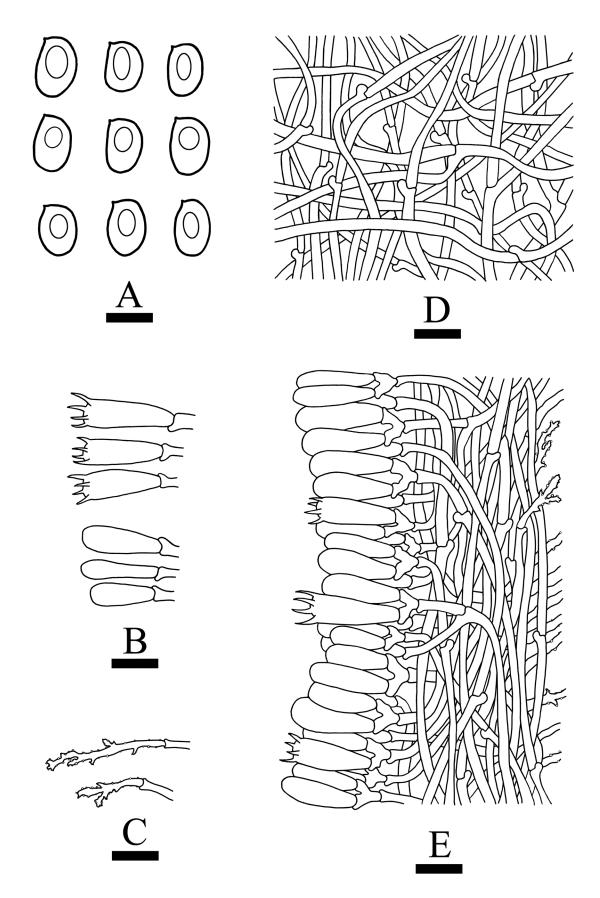


FIGURE 7. Microscopic structures of *Resupinatus yunnanensis* (drawn from the holotype). A: Basidiospores. B: Basidia and basidioles. C: The structure of some crystal encrusted branched hyphae on the cuticle of the fruit bodies. D: Hyphae from context. E: Section of hymenophore trama. Bars: $A = 20 \mu m$, $B-E = 10 \mu m$. Drawings by: Rong Li

An outline of all genera of Basidiomycota including three phylogenetic analyses with combined nLSU, SSU, 5.8S, RPB1, RPB2, and EF1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina revealed that *Coniophora* nested into family Coniophoraceae Ulbr. (Boletales, Agaricomycetes) and *Resupinatus* Nees ex Gray (Agaricales, Agaricomycetes) clustered into family Pleurotaceae (He *et al.* 2019). In the present study, based on the ITS+nLSU data (Fig. 1), *C. yunnanensis* nested into the order Boletales, and *R. yunnanensis* clustered into the order Agaricales, in which the results are similar two previous topology research. The placement of all fungal genera form 19 phyla of fungi at the class-, order- and family-level showed that both genera *Coniophora* and *Resupinatus* grouped in Basidiomycota (Wijayawardene *et al.* 2020).

In our study, the phylogenetic research inferred from ITS sequences data (Fig. 2) revealed that *C. yunnanensis* grouped into genus *Coniophora*, in which it grouped with *C. marmorata* having the strong supports (BS = 97%, BP = 100%, BPP = 1). However, *C. marmorata* differs *C. yunnanensis* by having its dimitic hyphal system and presence of the hyphal strands, and the subglobose basidiospores (Ginns 1982). Furthermore, phylogeny within the *Resupinatus* showed that *R. yunnanensis* clustered into genus *Resupinatus* and then was sister to *R. conspersus* (BS = 100%, BP = 100%, BPP = 1). However, morphologically, *R. conspersus* is separated from *R. yunnanensis* by having the basidiospores inamyloid and oblong, without the oil drops (Mcdonald 2015).

In the geographical distribution and ecological importance, Coniophora and Resupinatus species are an extensively studied group (Bernicchia & Gorjón 2010, Mcdonald 2015), mainly distributed in Europe (e.g., Austria, Russia, France, Germany, Poland, UK, Netherlands, Portugal, Sweden, Italy, Denmark, Norway, Finland, Spain) and mainly found on hardwood, although a few species grow on coniferous wood. Many species of Coniophora were found in Europe, but only three species were reported in China, and none species of *Resupinatus* were described in this country (Dai 2011), in which we presumed that more specimens of Coniophora and Resupinatus were under sampled by the mycologists. The researches on the taxa related with wood-decaying fungi of Coniophora from China have been reported (Dai 2011), in which three Coniophora species were reported, C. arida (Fr.) P. Karst., C. olivacea (Fr.) P. Karst., and C. puteana (Schumach.) P. Karst. Further studies should focus on the relationships between the host and Coniophora, Resupinatus species, as well as trying to better understand the evolutionary directions between plant and two genera species. The researches on the phylogeny of *Coniophora* and *Resupinatus* as well as many fungal studies on the molecular systematics (Binder & Hibbett 2006, Thorn et al. 2005, Bijeesh et al. 2020), will be useful to push the further research on fundamental research and applied research of fungi. I believe more species of Coniophora and Resupinatus occur in subtropical and tropical Asia, because macrofungi are a well study group of wood-inhabiting fungi, and they are much rich in tropical China (Wu et al. 2020, Wang et al. 2021, Yuan et al. 2021, Luo & Zhao 2022, Zhao et al. 2023), and it is very possible the same phenomenon for Coniophora and Resupinatus.

Wood-inhabiting macrofungal fungi are an extensively studied group of Basidiomycota (Bernicchia & Gorjón 2010, Dai 2012, Ma & Zhao 2021, Wu et al. 2022). The taxa of *Coniophora* and *Resupinatus* are typical examples of wood-rotting fungi, which is an extensively studied (Schmidt et al. 2002, Blanco et al. 2009, Gonou-Zagou et al. 2011, Mcdonald 2015, Lotz-Winter 2021). So far, several studies on new wood-decaying fungi of *Coniophora* and *Resupinatus* from China have been reported (Dai 2011, 2012).

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Project No. 32170004), the Highlevel Talents Program of Yunnan Province (YNQR-QNRC-2018-111) and the Science Foundation of Education Department of Yunnan Province (2023Y0724).

References

Baroni, T.J., Franco-Molano, A.E., Lodge, D.J., Lindner, D.L., Horak, E. & Hofstetter, V. (2007) *Arthromyces* and *Blastosporella*, two new genera of conidia-producing lyophylloid agarics (Agaricales, Basidiomycota) from the neotropics. *Mycological Research* 111: 572–580.

https://doi.org/10.1016/j.mycres.2007.03.007

Bernicchia, A. & Gorjón, S.P. (2010) Fungi Europaei 12: Corticiaceae s.l. Edizioni Candusso, Lomazzo, 1007 pp.

Bijeesh, C., Kumar, A.M. & Pradeep, C.K. (2020) A new species of Resupinatus (Agaricomycetes) with merulioid hymenophore from

- India. Phytotaxa 464: 167-174.
- https://doi.org/10.11646/phytotaxa.464.2.3
- Binder, M. & Hibbett, D.S. (2006) Molecular systematics and biological diversification of Boletales. Mycologia 98: 971–981. https://doi.org/10.3852/mycologia.98.6.971
- Binder, M., Larsson, K.H., Matheny, P.B. & Hibbett, D.S. (2010) Amylocorticiales ord. nov. and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102: 865-880. https://doi.org/10.3852/09-288
- Birkebak, J.M., Mayor, J.R., Ryberg, K.M. & Matheny, P.B. (2013) A systematic, morphological and ecological overview of the Clavariaceae (Agaricales). Mycologia 105: 896-911. https://doi.org/10.3852/12-070
- Blanco, M.N., Moreno, G., Checa, J., Platas, G. & Pelaìez, F. (2009) Taxonomic and phylogenetic revision of Coniophora arachnoidea, C. opuntiae, and C. prasinoides. Mycotaxon 108: 467–477. https://doi.org/10.5248/108.467
- Bodensteiner, P., Binder, M., Moncalvo, J., Agerer, R. & Hibbett, D.S. (2004) Phylogenetic relationships of cyphelloid homobasidiomycetes. Molecular Phylogenetics and Evolution 33: 501-512. https://doi.org/10.1016/j.ympev.2004.06.007
- Consiglio, G., Setti, L. & Thorn, R.G. (2018) New species of Hohenbuehelia, with comments on the Hohenbuehelia atrocoerulea -Nematoctonus robustus species complex. Persoonia 41: 202-212. https://doi.org/10.3767/persoonia.2018.41.10
- Co-David, D., Langeveld, D. & Noordeloos, M.E. (2009) Molecular phylogeny and spore evolution of Entolomataceae. Persoonia 23: 147-176.
 - https://doi.org/10.3767/003158509X480944
- Dai, Y.C. (2011) A revised checklist of corticoid and hydnoid fungi in China for 2010. Mycoscience 52: 69–79. https://doi.org/10.1007/s10267-010-0068-1
- Dai, Y.C. (2012) Polypore diversity in China with an annotated checklist of Chinese polypores. Mycoscience 53: 49-80. https://doi.org/10.1007/s10267-011-0134-3
- Dai, Y.C., Cui, B.K., Si, J., He, S.H., Hyde, K.D., Yuan, H.S. & Liu, X.Y. (2015) Dynamics of the worldwide number of fungi with emphasis on fungal diversity in China. Mycological Progress 14: 1-9. https://doi.org/10.1007/s11557-015-1084-5
- Desjardin, D.E., Binder, M & Roekring, S. (2009) Spongiforma, a new genus of gasteroid boletes from Thailand. Fungal Diversity 3:
- Felsenstein, J. (1985) Confidence intervals on phylogenetics: an approach using bootstrap. Evolution 39: 783–791. https://doi.org/10.2307/2408678
- Gersonde, M. (1958) Untersuchungen über die Giftempfindlichkeit verschiedener Stämme von Pilzarten der Gattungen Coniophora, Poria, Merulius und Lentinus. Holzforschung 12: 11–19.
- Ginns, J. (1982) A monograph of the genus Coniophora (Aphyllophorales, Basidiomycetes). Opera Botanica 61: 1–61.
- Ginns, J. & Kokko, E. (1976) Basidiospore germ pore and wall structure in Coniophora (Basidiomycetes, Aphyllophorales). Canadian Journal of Botany 54: 399-401. https://doi.org/10.1139/b76-037
- Gonou-Zagou, Z., Triantafyllou, M., Floudas, D. & Delivorias, P. (2011) The genus Resupinatus Nees ex Gray in Greece. Nova Hedwigia 92: 513-522.
 - https://doi.org/10.1127/0029-5035/2011/0092-0513
- Gray, S.F. (1821) A natural arrangement of British plants. 1. Baldwin, Cradock & Joy, London, Baldwin, 824 pp.
- Hall, T.A. (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
- Halling, R.E., Baroni, T.J. & Binder, M. (2007) A new genus of Boletaceae from eastern North America. Mycologia 99: 310-316. https:// doi.org/10.3852/mycologia.99.2.310
- He, M.Q., Zhao, R.L., Hyde, K.D., Begerow, D., Kemler, M., Yurkov, A. & McKenzie, E.H.C. (2019) Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99: 105-367. https://doi.org/10.1007/s13225-019-00435-4
- Hofstetter, V., Clémençon, H., Vilgalys, R. & Moncalvo, J. (2002) Phylogenetic analyses of the Lyophylleae (Agaricales, Basidiomycota) based on nuclear and mitochondrial rDNA sequences. Mycological Research 106: 1043-1059. https://doi.org/10.1017/S095375620200641X
- Hosaka, K., Castellano, M.A. & Spatafora, J.W. (2008) Biogeography of Hysterangiales (Phallomycetidae, Basidiomycota). Mycological

Research 112: 448-462.

https://doi.org/10.1016/j.mycres.2007.06.004

Hosen, M.I., Feng, B., Wu, G., Zhu, X.T., Li, Y.C. & Yang, Z.L. (2013) *Borofutus*, a new genus of Boletaceae from tropical Asia: phylogeny, morphology and taxonomy. *Fungal Diversity* 58: 215–226.

https://doi.org/10.1007/s13225-012-0211-8

Hughes, K.W., Petersen, R.H. & Lickey, E.B. (2009) Using heterozygosity to estimate a percentage DNA sequence similarity for environmental species' delimitation across basidiomycete fungi. *New Phytologist* 182: 795–798.

Käärik, A. (1979) Coniophora puteana (Schum. ex Fr.) Karst. Int. Res. Group Wood Preserv 117: 11-25.

Larsson, K. (2007) Re-thinking the classification of corticioid fungi. Mycological Research 111: 1040–1063.

https://doi.org/10.1016/j.mycres.2007.08.001

https://doi.org/10.1111/j.1469-8137.2009.02802.x

Leonardi, M., Paolocci, F., Rubini, A., Simonini, G. & Pacioni, G. (2005) Assessment of inter-and intra-specific variability in the main species of Boletus edulis complex by ITS analysis. *FEMS Microbiology Letters* 243: 411–416.

https://doi.org/10.1016/j.femsle.2005.01.003

Li, Y.C., Feng, B. & Yang, Z. (2011) *Zangia*, a new genus of Boletaceae supported by molecular and morphological evidence. *Fungal Diversity* 49: 125–143.

https://doi.org/10.1007/s13225-011-0096-y

Li, Y.C., Ortiz-Santana, B., Zeng, N., Feng, B. & Yang, Z.L. (2014) Molecular phylogeny and taxonomy of the genus *Veloporphyrellus*. *Mycologia* 106: 291–306.

https://doi.org/10.3852/106.2.291

- Lotz-Winter, H., Popa, F., Reschke, K., Woerly, B., Hertenstein, A. & Piepenbring, M. (2021) *Resupinatus striatulus* in the German Black Forest National Park. Recent records of a species not reported for Germany for 80 years. *Zeitschrift fuer Mykologie* 87: 3–15.
- Luo, K.Y. & Zhao, C.L. (2022) Morphology and multigene phylogeny reveal a new order and a new species of wood-inhabiting basidiomycete fungi (Agaricomycetes). *Frontiers in Microbiology* 13:970731. https://doi.org/10.3389/fmicb.2022.970731
- Lygis, V., Vasiliauskaite, I., Matelis, A., Pliűra, A. & Vasaitis, R. (2014) Fungi in living and dead stems and stumps of *Pinus mugo* on coastal dunes of the Baltic Sea. *Plant Protection Science* 50: 221–226.

https://doi.org/10.17221/25/2014-PPS

Ma, X. & Zhao, C.L. (2021) *Xylodon bambusinus* and *X. xinpingensis* spp. nov. (Hymenochaetales) from southern China. *Phytotaxa* 511: 231–247.

https://doi.org/10.11646/phytotaxa.511.3.3

Matheny, P.B., Curtis, J.M., Hofstetter, V., Aime, M.C., Moncalvo, J.M., Ge, Z.W. & Slot, J.C. (2006) Major clades of Agaricales: a multilocus phylogenetic overview. *Mycologia* 98: 982–995.

https://doi.org/10.3852/mycologia.98.6.982

- Matheny, P.B., Wang, Z.J., Binder, M., Curtis, J.M., Lim, Y.W., Nilsson, R.H. & Hughes, K.W. (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). *Molecular Phylogenetics and Evolution* 43: 430–451. https://doi.org/10.1016/j.ympev.2006.08.024
- Martín, M.P. & Raidl, S. (2002) The taxonomic position of Rhizopogon melanogastroides (Boletales). Mycotaxon 84: 221-228.
- Mcdonald, J.L. (2015) Morphological and Molecular Systematics of Resupinatus (Basidiomycota). The University of Western, London, Ontario, 319 pp.
- Miller, M.A., Holder, M.T., Vos, R., Midford, P.E., Liebowitz, T., Chan, L. & Hoover, P. (2009) The CIPRES Portals. CIPRES. Available from: http://www.phylo.org/sub_sections/portal (accessed 4 August 2009) [Archived by WebCite(r) at http://www.webcitation.org/5imQlJeQa]
- Moncalvo, J.M., Lutzoni, F., Rehner, S.A., Johnson, J.L. & Vilgalys, R. (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. *Systematic Biology* 49: 278–305.

https://doi.org/10.1093/sysbio/49.2.278

Moncalvo, J.M., Vilgalys, R., Redhead, S.A., Johnson, J.E., James, T.Y., Aime, M.C. & Hofstetter, V. (2002) One hundred and seventeen clades of euagarics. *Molecular Phylogenetics and Evolution* 23: 357–400.

https://doi.org/10.1016/S1055-7903(02)00027-1

Nagy, L.G., Walther, G., Házi, J., Vágvölgyi, C. & Papp, T. (2011) Understanding the evolutionary processes of fungal fruiting bodies: correlated evolution and divergence times in the Psathyrellaceae. *Systematic Biology* 60: 303–17. https://doi.org/10.1093/sysbio/syr005

Nuhn, M., Binder, M., Taylor, A., Halling, R.E. & Hibbett, D.S. (2013) Phylogenetic overview of the Boletineae. *Fungal Biology* 117: 479–511.

- https://doi.org/10.1016/j.funbio.2013.04.008
- Nylander, J.A.A. (2004) MrModeltest v.2. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden.
- Petersen, JH. (1996) Farvekort. The Danish Mycological Society's colour-chart. Foreningen til Svampekundskabens Fremme. pl. 1-6.
- Petersen, R.H., Psurtseva, N.V., Zmitrovich, I.V., Chachuła, P., Arslanov, S. & Hughes, K.W. (2015) *Lignomyces*, a new genus of pleurotoid Agaricomycetes. *Mycologia* 107: 1045–1054.
 - https://doi.org/10.3852/14-355
- Redhead, S.A. & Nagasawa, E. (1987) Resinomycena japonica and Resupinatus merulioides, new species of Agaricales from Japan. Canadian Journal of Botany 65: 972–976.
- Rochet, J., Moreau, P., Manzi, S. & Gardes, M. (2010) Comparative phylogenies and host specialization in the alder ectomycorrhizal fungi *Alnicola*, *Alpova* and *Lactarius* (Basidiomycota) in Europe. *BMC Evolutionary Biology* 11: 40. https://doi.org/10.1186/1471-2148-11-40
- Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S. & Larget, B. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* 61: 539–542. https://doi.org/10.1093/sysbio/sys029
- Sánchez-García, M., Matheny, P.B., Palfner, G. & Lodge, D.J. (2014) Deconstructing the Tricholomataceae (Agaricales) and introduction of the new genera *Albomagister*, *Corneriella*, *Pogonoloma* and *Pseudotricholoma*. *Taxon* 63: 993–1007. https://doi.org/10.12705/635.635.3
- Sánchez-García, M. & Matheny, P.B. (2017) Is the switch to an ectomycorrhizal state an evolutionary key innovation in mushroom-forming fungi? A case study in the Tricholomatineae (Agaricales). *Evolution* 71: 51–65. https://doi.org/10.1111/evo.13099
- Schmidt, O., Grimm, K. & Moreth, U. (2002) Molecular Identity of Species and Isolates of the *Coniphora* Cellar Fungi. *Holzforschung* 56: 563–571.
- Singer, R. (1975) The Agaricales in modern taxonomy. 3rd ed. J Cramer, Vaduz, Liechtenstein, 912 pp.
- Skrede, I., Engh, I.B., Binder, M., Carlsen, T., Kauserud, H. & Bendiksby, M. (2011) Evolutionary history of Serpulaceae (Basidiomycota): molecular phylogeny, historical biogeography and evidence for a single transition of nutritional mode. *BMC Evolutionary Biology* 11: 230.
 - https://doi.org/10.1186/1471-2148-11-230
- Stensrud, O., Orr, R.J.S., Russell, J.S. & Hoiland, K. (2014) Phylogenetic relationships in *Cortinarius* with focus on North European species. *Karstenia* 54: 57–71.
- Swofford, D.L. (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Massachusetts.
- Thorn, R.G., Moncalvo, J.M., Redhead, S.A., Lodge, D.J. & Martin, M.P. (2005) A new poroid species of *Resupinatus* from Puerto Rico, with a reassessment of the cyphelloid genus *Stigmatolemma*. *Mycologia* 97: 1140–1151. https://doi.org/10.3852/mycologia.97.5.1140
- Vellinga, E.C. (2004) Genera in the family Agaricaceae: evidence from nrITS and nrLSU sequences. *Mycological Research* 108: 354–377
 - https://doi.org/10.1017/S0953756204009700
- Vu, D., Groenewald, M., Vries, M.D., Gehrmann, T., Stielow, B. & Eberhardt, U. (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135–154.
 - https://doi.org/10.1016/j.simyco.2018.05.001
- Wang, Y.R., Wu, Y.D., Vlasák, J., Yuan, Y. & Dai, Y.C. (2021) Phylogenetic analysis demonstrating four new species in *Megasporoporia* sensu lato (Polyporales, Basidiomycota). *Mycosphere* 12: 1012–1037.
 - https://doi.org/10.5943/mycosphere/12/1/11
- White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In:* Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (eds.) *PCR protocols: a guide to methods and applications.* Academic Press, San Diego, pp. 315–322.
 - https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Wijayawardene, N.N., Hyde, K.D., Rajeshkumar, K.C., Hawksworth, D., Madrid, H., Kirk, P.M. & Braun, U. (2017) Notes for genera: Ascomycota. *Fungal Diversity* 86: 1–594.
 - https://doi.org/10.1007/s13225-017-0386-0
- Wijayawardene, N.N., Hyde, K.D., Al-Ani, L.K., Tedersoo, L., Haelewaters, D., Rajeshkumar, K.C. & Zhao, R. (2020) Outline of Fungi and fungus-like taxa. *Mycosphere* 11: 1060–1456.

- https://doi.org/10.5943/mycosphere/11/1/8
- Wijayawardene, N., Hyde, K.D., Dai, D., Sánchez-García, M., Goto, B., Saxena, R. & Erdoðdu, M. (2022) Outline of Fungi and fungus-like taxa 2021. *Mycosphere* 13: 53–453.

https://doi.org/10.5943/mycosphere/13/1/2

- Wu, F., Yuan, Y., Chen, J.J., Cui, B.K., Zhou, M. & Dai, Y.C. (2020) Terrestriporiaceae fam. nov., a new family of Russulales (Basidiomycota). *Mycosphere* 11: 2755–2766.
 - https://doi.org/10.5943/mycosphere/11/1/21
- Wu, F., Man, X.W., Tohtirjap, A. & Dai, Y.C. (2022) A comparison of polypore funga and species composition in forest ecosystems of China, North America, and Europe. *Forest Ecosystems* 9: 100051. https://doi.org/10.1016/j.fecs.2022.100051
- Wu, G., Feng, B., Xu, J., Zhu, X., Li, Y., Zeng, N., Hosen, M.I. & Yang, Z.L. (2014) Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. *Fungal Diversity* 69: 93–115. https://doi.org/10.1007/s13225-014-0283-8
- Yang, Z.L., Matheny, P.B., Ge, Z.W., Slot, J.C. & Hibbett, D.S. (2005) New asian species of the genus *Anamika* (euagarics, hebelomatoid clade) based on morphology and ribosomal dna sequences. *Mycological Research* 109: 1259–1267. https://doi.org/10.1017/S0953756205003758
- Yuan, Y., Chen, J.J., Korhonen, K., Martin, F. & Dai, Y.C. (2021) An updated global species diversity and phylogeny in the forest pathogenic genus *Heterobasidion* (Basidiomycota, Russulales). *Frontiers in Microbiology* 11: 596393. https://doi.org/10.3389/fmicb.2020.596393
- Zervakis, G.I., Ntougias, S., Gargano, M.L., Besi, M.I., Polemis, E., Typas, M.A. & Venturella, G. (2014) A reappraisal of the *Pleurotus eryngii* complex-new species and taxonomic combinations based on the application of a polyphasic approach, and an identification key to *Pleurotus* taxa associated with Apiaceae plants. *Fungal Biology* 118: 814–834. https://doi.org/10.1016/j.funbio.2014.07.001
- Zhao, C.L. & Wu, Z.Q. (2017) *Ceriporiopsis kunmingensis* sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. *Mycological Progress* 16: 93–100. https://doi.org/10.1007/s11557-016-1259-8
- Zhao, C.L., Qu, M.H., Huang, R.X. & Karunarathna, S.C. (2023) Multi-Gene Phylogeny and taxonomy of the wood-rotting fungal genus *Phlebia* sensu lato (Polyporales, Basidiomycota). *Journal of Fungi* 9: 320. https://doi.org/10.3390/jof9030320
- Zhao, R.L., Li, G.J., Sánchez-Ramírez, S., Stata, M., Yang, Z.L., Wu, G. & Dai, Y.C. (2017) A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. *Fungal Diversity* 84: 43–74.
 - https://doi.org/10.1007/s13225-017-0381-5
- Zhao, Y.N., Liu, S.L., Nakasone, K.K. & He, S.H. (2018) *Coniophoropsis bambusicola* sp. nov. (Coniophoraceae, Basidiomycota) from southern Vietnam. *Phytotaxa* 360: 153–160.
 - https://doi.org/10.11646/phytotaxa.360.2.7