

2022 .77 (1)

Kew Bulletin

Jan Ke

2022 77 (1)

Volume 77, issue 1, March 2022

25 articles in this issue

Sternbergia mishustinii (Amaryllidaceae): a new species from the Mersin Province in southern Turkey

Dimitri Zubov, Anna Trias Blasi & Ruslan Mishustin Original Article | Published: 30 March 2022 | Pages: 317 - 323

Eichleriella aculeobasidiata sp. nov. (Auriculariales, Basidiomycota) evidenced by morphological characters and phylogenetic analyses in China

Hui Wang, Dong-Qiong Wang & Chang-Lin Zhao Original Article | Published: 28 March 2022 | Pages: 325 - 332

Three new species of lichenicolous fungi from India

Yogesh Joshi

Original Article Published: 28 March 2022 Pages: 333 - 340

Peperomia albertiae (Piperaceae), a new species from India

Arjun Thomas & J. Jameson

Original Article Published: 09 March 2022 Pages: 341 - 346

Eichleriella aculeobasidiata sp. nov. (Auriculariales, Basidiomycota) evidenced by morphological characters and phylogenetic analyses in China

Hui Wang^{1,2,3}, Dong-Qiong Wang^{1,2} & Chang-Lin Zhao^{1,2,3,4,5}

Summary. A new wood-inhabiting fungal species, *Eichleriella aculeobasidiata* sp. nov, is described based on a combination of morphological features and molecular evidence. *E. aculeobasidiata* is characterised by a dimitic hyphal system with clamped generative hyphae, and narrowly ovoid to obconical, distinctly curved, hyaline, smooth, thin-walled basidiospores which contain oil droplets. Sequences of the ITS gene region of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood, maximum parsimony and Bayesian inference methods. The phylogenetic analysis showed that *E. aculeobasidiata* belonged to *Eichleriella* and formed a monophyletic lineage with strong support (100% BS, 100% BP, 1.00 BPP), and then grouped with a clade comprised of *E. xinpingensis* and *E. tenuicula*.

Key Words. phylogeny, taxonomy, wood-inhabiting fungi, Yunnan province.

Introduction

Eichleriella Bres. (Auriculariales) was described by Bresadola (1903), belonging to the family Auriculariaceae, which is characterised by annual or short-living perennial, leathery to ceraceous basidiomata with smooth, pale coloured hymenophore (in some species covered by spines), monomitic to dimitic hyphal structure with clamped genitive hyphae, cystidia often present, longitudinally septate basidia with 2- or 4-celled, and hyaline, cylindrical to narrowly cylindrical basidiospores (Bresadola 1903; Malysheva & Spirin 2017). So far about 16 species have been accepted in this genus worldwide (Bresadola 1903; Roberts 2008; Malysheva & Spirin 2017; Liu *et al.* 2019), (http://www.indexfungorum.org) and (https:// www.mycobank.org).

Weiss & Oberwinkler (2001), in a phylogenetic study of Auriculariales and related groups, showed that *Eichleriella* grouped with *Auricularia* Bull., *Exidia* Fr., *Exidiopsis* (Bref.) Möller and *Heterochaete* Pat. The classification and phylogeny of Auriculariales revealed that *Eichleriella* clustered with *Amphistereum* Spirin & Malysheva and *Auricularia*. Malysheva & Spirin (2017) introduced the taxonomy and phylogeny of the Auriculariales (Agaricomycetes, Basidiomycota) with stereoid basidiocarps, in which the genus *Eichleriella* was reinstated to encompass ten closely related species with ellipsoid ovoid basidia, and the type of the genus, *E. incarnata* Bres., was placed in the synonymy of *E. leucophaea* Bres. Phylogenetically *Amphistereum* grouped closely with *Eichleriella*, with ten species nested within *Eichleriella*. Recently, Liu *et al.* (2019) described the new species *Eichleriella xinpingensis* C.L.Zhao from southern China and suggested that *E. xinpingensis* belonged to the Auriculariaceae and was closely related to *E. tenuicula* (Lév.) Spirin & Malysheva. *Heterochaetella ochracea* Viégas was moved to *Eichleriella* based on morphological evidence and DNA analyses (Alvarenga *et al.* 2019).

During studies on wood-inhabiting fungi in southern China, an additional taxon was found, which could not be assigned to any described species. In this study, a new species of *Eichleriella* is proposed based on a combination of macro-anatomical and molecular (internal transcribed spacer (ITS) fungal DNA barcode) characters.

Materials and Methods

Morphological studies

The specimens studied are deposited at the herbarium of Southwest Forestry University (SWFC), Kunming, Yunnan Province, P.R. China. Macromorphological

Accepted for publication 8 September 2021. Published online 28 March 2022

¹ Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, People's Republic of China. e-mail: fungichanglinz@163.com

² College of Biodiversity Conservation, Southwest Forestry University, Kunming, 650224, People's Republic of China.

³ Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, People's Republic of China.

⁴ Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunning, 650224, People's Republic of China.

⁵ Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.

descriptions are based on field notes. Colour terms follow Petersen (1996). Micromorphological data were obtained from dried specimens, and observed under a light microscope (Dai 2012). The following abbreviations are used: KOH = 5% potassium hydroxide, CB = Cotton Blue, CB- = acyanophilous; IKI = Melzer's reagent, IKI- = both inamyloid and indextrinoid; L = mean spore length (arithmetic average for all spores), W = mean spore width (arithmetic average for all spores), Q = variation in the L/W ratios between the specimens studied, (n = a/b) = number of spores (a) measured from given number (b) of specimens.

Molecular procedures and phylogenetic analyses

The EZNA HP Fungal DNA Kit (Omega Biotechnologies Co., Ltd, Kunming, Yunnan Province, P.R. China) was used to obtain PCR products from dried specimens, according to the manufacturer's instructions with some modifications. The ITS region was amplified with primer pair ITS5 and ITS4 (White *et al.* 1990). The PCR procedure for ITS was as follows: initial denaturation at 95°C for 3 min, followed by 35 cycles at 94°C for 40 s, 58°C for 45 s and 72°C for 1 min, and a final extension of 72°C for 10 min. The PCR products were purified and directly sequenced at Kunming Tsingke Biological Technology Limited Company, Kunming, Yunnan Province, P.R. China. All newly generated sequences were deposited at NCBI GenBank database (Table 1).

Sequencher 4.6 (GeneCodes, Ann Arbor, MI, USA) was used to edit the DNA sequences. Sequences were aligned with MAFFT 7 (http://mafft.cbrc.jp/alignment/server/) using the "E-INS-I" strategy and manually adjusted in BioEdit (Hall 1999). The sequence alignment was deposited in TreeBase (submission ID 26408). Sequences of *Amphistereum schrenkii* (Burt) Spirin & Malysheva and *A. leveilleanum* (Berk. & M.A.Curtis) Spirin & Malysheva obtained from GenBank were used as an outgroup to root trees following Malysheva & Spirin (2017) (Fig. 1).

Maximum parsimony analysis was applied to the ITS dataset. Approaches to phylogenetic analyses followed Zhao & Wu (2017), and the tree construction procedure was performed in PAUP* version 4.0b10 (Swofford 2002). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap (BT) analysis with 1000 replicates (Felsenstein 1985). Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each Maximum Parsimonious Tree generated. The data matrix was also analysed using Maximum Likelihood (ML) approach with RAxML-HPC2 through the CIPRES Science Gateway (www.phylo.org; Miller *et al.* 2009). Branch support (BS) for ML analysis was determined by 1,000 bootstrap replicates.

MrModeltest 2.3 (Nylander 2004) was used to determine the best-fit evolution model for each data set for Bayesian inference (BI). BI was calculated with MrBayes 3.1.2 (Ronquist & Huelsenbeck 2003). Four Markov chains run for 2 runs from random starting trees for 700 thousand generations (Fig. 1) and trees were sampled every 100 generations. The first one-fourth generations were discarded as burn-in. The majority rule consensus tree of all remaining trees was calculated. Branches were considered as significantly supported if they received maximum likelihood bootstrap values (BS) >75%, maximum parsimony bootstrap values (BT) >75%, or Bayesian posterior probabilities (BPP) >0.95.

Results

Molecular phylogeny

The ITS dataset (Fig. 1) included sequences from 25 fungal specimens representing 14 species. The dataset had an aligned length of 517 characters, of which 387 characters are constant, 49 are variable and parsimony-uninformative, and 81 are parsimony-informative. Maximum parsimony analysis yielded 5 equally parsimonious trees (TL = 249, CI = 0.663, HI = 0.337, RI = 0.821, RC = 0.544). Best model for the ITS dataset estimated and applied in the Bayesian analysis was GTR+I+G (lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1)). Bayesian analysis and ML analysis resulted in a similar topology as MP analysis, with an average standard deviation of split frequencies = 0.009996 (BI).

In the phylogeny (Fig. 1) inferred from ITS sequences obtained for related taxa of *Eichleriella*, *E. aculeobasidiata* formed a monophyletic lineage and grouped with *E. xinpingensis* and *E. tenuicula* with strong support (100% BS, 100% BP, 1.00 BPP).

Taxonomic Treatment

Eichleriella aculeobasidiata *C.L.Zhao*, sp. nov. Type: China, Yunnan Province, Puer, Zhenyuan County, Heping Town, Damoshan, on fallen branch, 16 Jan. 2018, *C. L. Zhao* 6159 (holotype SWFC).

MycoBank no.: MB 840260.

GenBank no.: CLZhao 4422 (ITS MZ416783); CLZhao 6159 (ITS MZ416784); CLZhao 6473 (ITS MZ416785); CLZhao 11294 (ITS MZ416786).

Basidiomata annual, resupinate, ceraceous, first orbicular, later fusing together, without odour or taste when fresh, becoming ceraceous to corneus upon drying, up to 10 cm

. ·	Sample no.	GenBank accession no.	References	
Species name		ITS		
Amphistereum leveilleanum	FP-106715	KX262119	Malysheva & Spirin 2017	
Amphistereum schrenkii	HHB 8476	KX262130	Malysheva & Spirin 2017	
Eichleriella alliciens	HHB 7194	KX262120	Malysheva & Spirin 2017	
Eichleriella bactriana	TAAM 55071	KX262121	Malysheva & Spirin 2017	
Eichleriella bactriana	TAAM 96698	KX262123	Malysheva & Spirin 2017	
Eichleriella bactriana	TAAM 104431	KX262138	Malysheva & Spirin 2017	
Eichleriella crocata	TAAM 101077	KX262100	Malysheva & Spirin 2017	
Eichleriella crocata	TAAM 125909	KX262118	Malysheva & Spirin 2017	
Eichleriella desertorum	LR 49350	KX262142	Malysheva & Spirin 2017	
Eichleriella flavida	LR 49412	KX262137	Malysheva & Spirin 2017	
Eichleriella leucophaea	KHL15277	KX262115	Malysheva & Spirin 2017	
Eichleriella leucophaea	KHL 15299	KX262136	Malysheva & Spirin 2017	
Eichleriella leucophaea	LE 303261	KX262111	Malysheva & Spirin 2017	
Eichleriella macrospora	FP-101769	KX262129	Weiss & Oberwinkler 2001	
Eichleriella shearii	LR 23258	KX262139	Malysheva & Spirin 2017	
Eichleriella shearii	USJ 54609	AF291284	Weiss & Oberwinkler 2001	
Eichleriella tenuicula	LR 17599	KX262141	Malysheva & Spirin 2017	
Eichleriella xinpingensis	CLZhao 812	MK560878	Liu <i>et al.</i> 2019	
Eichleriella xinpingensis	CLZhao 836	MK560879	Liu et al. 2019	
Eichleriella xinpingensis	CLZhao 842	MK560880	Liu et al. 2019	
Eichleriella xinpingensis	CLZhao 870	MK560881	Liu et al. 2019	
Eichleriella aculeobasidiata	CLZhao 4422	MZ416783	Present study	
Eichleriella aculeobasidiata	CLZhao 6159	MZ416784	Present study	
Eichleriella aculeobasidiata	CLZhao 6473	MZ416785	Present study	
Eichleriella aculeobasidiata	CLZhao 11294	MZ416786	Present study	

Table 1. List of species, specimens and GenBank accession numbers of sequences used in this study

long, 2.5 cm wide, 100 – 300 µm thick. Hymenial surface grandinioid, cream to buff when fresh, becoming claybuff to fawn upon drying, covered by blunt spines, 0.1 -0.3 mm long, 6 – 7 per mm. Margin sterile, cream to buff, 0.5 - 1 mm wide. Hyphal structure. Hyphal system dimitic, generative hyphae with clamp connections, IKI-, CB-; tissues unchanged in KOH. Hymenium. Generative hyphae with clamp connections, hyaline, thin-walled, unbranched, interwoven, 1.2 - 4.5 µm in diam.; skeletal hyphae hyaline, thick-walled with a narrow to wide lumen, rarely branched, interwoven, 2 - 4 µm in diam. Cystidia abundant, clavate, $17 - 42 \times 4 - 11 \mu m$. Basidia narrowly ovoid to obconical, longitudinally septate, embedded, two-celled, with oil drops, $14 - 47.5 \times 5 - 14 \,\mu\text{m}$. Spores. Basidiospores allantoid, hvaline, smooth, thin-walled, with oil drops, IKI–, CB–, $9 - 13.5 \times 4.5 - 7.5 \mu m$, L = 10.97 μm , W = 5.74 μ m, Q = 1.78 – 2.15 (n = 120/4). Figs 2, 3.

RECOGNITION. *Eichleriella aculeobasidiata* differs from all its congeners by the following combination of traits: annual, resupinate basidiomata with cream to buff hymenophore, a dimitic hyphal system with clamped generative and thick-walled skeletal hyphae, and longitudinally septate, embedded, two-celled basidia, and allantoid basidiospores $(9 - 13.5 \times 4.5 - 7.5 \mu m)$.

DISTRIBUTION. Known only from the type locality.

SPECIMENS EXAMINED. CHINA. Yunnan Province, Puer, Jingdong County, Wuliangshan National Nature Reserve, on the angiosperm trunk, 6 Oct. 2017, C. L. Zhao 4422; Yuxi, Xinping County, Mopanshan National Forestry Park, on the fallen branch of angiosperm, 19 Jan. 2018, *C. L. Zhao* 6473; Wenshan, Xichou County, Xiaoqiaogou National Nature Reserve, on the fallen branch of angiosperm, 16 Jan. 2019, *C. L. Zhao* 11294 (SWFC).

HABITAT. Lignicolous.

CONSERVATION STATUS. Not evaluated

ETYMOLOGY. Refers to the acute basidia of the type specimens.

NOTES. In the present study, a new species, *Eichleriella aculeobasidiata* is described based on phylogenetic analyses and morphological characters.

Phylogenetically, Eichleriella aculeobasidiata is grouped with a clade including *E. xinpingensis* and *E. tenuicula* (Fig. 1). Morphologically, *E. tenuicula* differs from *E. aculeobasidiata* by the effused basidiomata with pale buff hymenial surface and larger basidiospores $(16 - 21 \times 5.5 - 6 \ \mu\text{m}$, Roberts 2008); *E. xinpingensis* differs by the clay-pink to vinaceous hymenial surface and smaller basidiospores $(6.5 - 10 \times 3.5 - 4.5 \ \mu\text{m}$, Liu *et al.* 2019).

Morphologically, Eichleriella bactriana Spirin & Malysheva, E. shearii (Burt) Spirin & Malysheva, E. xinpingensis and E. aculeobasidiata, share the similar character of a grandinioid or hydnoid hymenial surface. However, E. bactriana differs from E. aculeobasidiata by having thicker basidiomata (up to 1 mm) with a dark brown hymenial surface (Malysheva & Spirin 2017); E. shearii differs in having larger basidiospores (11.4 – 16.2 × 5.1 – 7.1 µm,

Fig. 1. Maximum Parsimony strict consensus tree illustrating the phylogeny of *Eichleriella aculeobasidiata* and related species in *Eichleriella* based on ITS sequences. Branches are labelled with maximum likelihood bootstrap values > 70%, parsimony bootstrap values > 50% and Bayesian posterior probabilities > 0.95. Newly sequenced specimens are in bold.

Malysheva & Spirin 2017); *E. xinpingensis* is separated from the new species by the pale brown to dark brown generative hyphae (Liu *et al.* 2019).

Eichleriella alliciens (Berk. & Cooke) Burt, E. crocata (Pat.) Spirin & Malysheva, E. flavida (Pat.) Spirin & Malysheva, E. macrospora (Ellis & Everh.) G.W.Martin, E. shearii, and E. aculeobasidiata are all characterised by having clavate cystidia. However, E. alliciens differs from E. aculeobasidiata by having a pinkish to pale ochraceous hymenial surface and four-celled basidia (Malysheva & Spirin 2017); E. crocata is separated from the new species by the smooth hymenial surface and four-celled basidia (Malysheva & Spirin 2017); E. flavida differs in having a monomitic hyphal system (Malysheva & Spirin 2017); E. macrospora differs in having larger basidiospores (12.3 – $16.5 \times$ 5.6 - 7.1 µm, Malysheva & Spirin 2017); E. shearii differs from E. aculeobasidiata by having larger basidiospores (11.4 – $16.2 \times 5.1 - 7.1 \mu m$, Malysheva & Spirin 2017).

Eichleriella desertorum Spirin & Malysheva, *E. leucophaea* Bres., *E. sicca* Spirin & Miettinen and *E. aculeobasidiata* have allantoid basidiospores. However, *E. desertorum* differs from *E. aculeobasidiata* by having a smooth hymenial surface (Malysheva & Spirin 2017); *E. leucophaea* differs in having the larger basidiospores ($12.3 - 22.1 \times 9.0 - 12.3 \mu m$, Malysheva & Spirin 2017); *E. sicca* is separated from the new species by the cyanophilous generative hyphae (Malysheva & Spirin 2017).

Wood-rotting fungi are an extensively studied group of Basidiomycota (Gilbertson & Ryvarden 1987; Núñez & Ryvarden 2001; Bernicchia & Gorjón 2010; Dai 2012; Ryvarden & Melo 2014; Chen et al. 2016; Han et al. 2016; Song et al. 2016; Cui et al. 2019; Guan et al. 2020; Wang et al. 2020), but the diversity of Chinese wood-rotting fungi is still not well known. The hosts of Eichleriella species are mainly distributed in hardwood forest (McNabb 1969; Malysheva & Spirin 2017; Alvarenga et al. 2019; Liu et al. 2019). Two Eichleriella species were reported from China prior to this study, E. chinensis Pilát and E. xinpingensis (Pilát 1940; Liu et al. 2019). However, Eichleriella chinensis differs from this new species by its reflexed margin and presence of gloeocystidia (Pilát 1940).

Fig. 2. Basidiomata of Eichleriella aculeobasidiata (holotype). Scale bars: A 1 cm; B 1 mm. PHOTOS: HUI WANG.

Key to the known species of Eichleriella worldwide

1.	Hymenophore smooth	2
1.	Hymenophore grandinioid or odontioid or tuberculate	7
2.	Basidiomata > 300 μm in thickness	3
2.	Basidiomata < 300 µm in thickness	4
3.	Cystidia > 25 µm in length	E. bactriana
3.	Cystidia < 25 µm in length	E. incarnata
4.	Hymenophore soft leathery	5
4.	Hymenophore ceraceous	6
5.	Basidiospores > 5 µm in width	E. alliciens
5.	Basidiospores < 5 µm in width	E. crocata
6.	Subicular hyphae yellowish, slightly thick-walled, CB	E. desertorum
6.	Subicular hyphae hyaline, thin-walled, CB+	E. sicca
7.	Hyphal system dimitic	8
7.	Hyphal system monomitic	
8.	Hymenial surface clay-pink to vinaceous	E. xinpingensis
8.	Hymenial surface cream to buff	
9.	Basidiospores > 15 µm in length	E. tenuicula
9.	Basidiospores < 15 µm in length	E. aculeobasidiata
10.	Margin detaching	
10.	Margin adnate	12
11.	Hymenophore tuberculate	E. shearii
11.	Hymenophore grandinioid to hydnoid	E. chinensis

Fig. 3. Microscopic structures of *Eichleriella aculeobasidiata* (drawn from the holotype). A basidiospores; B cystidia; C basidia; D basidioles; E a section of hymenium. DRAWN BY HUI WANG.

12.	Basidiospores > 17 µm in length	<i>E</i> .	hoheriae
12.	Basidiospores < 17 µm in length		13
13.	Hymenophore ceraceous		14
13.	Hymenophore soft leathery		15
14.	Basidiomata > 300 µm in thickness	E. pr	ulvinata
14.	Basidiomata < 300 µm in thickness	E. m	acrospora
15.	Spines < 100 µm in length	<i>E</i>	flavida
15.	Spines > 100 µm in length	<i>E</i> .	ochracea

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Project No. 32170004, U2102220), Yunnan Fundamental Research Project (Grant No. 202001AS070043) and High-level Talents Program of Yunnan Province (YNQR-QNRC-2018-111).

References

- Alvarenga, R. L. M., Spirin, V., Malysheva, V., Gibertoni, T. B. & Larsson, K-H. (2019). Two new genera and six other novelties in *Heterochaete* sensu lato (Auriculariales, Basidiomycota). *Botany* 97: 439 – 451. https://doi.org/10.1139/cjb-2019-0046
- Bernicchia, A. & Gorjón, S. P. (2010). Fungi europaei 12: Corticiaceae s.l. Edizioni Candusso, Lomazzo.
- Bresadola, G. (1903). Fungi Polonici a cl. Viro B. Eichler lecti. Ann. Mycol. 1: 97 131.
- Chen, J. J., Cui, B. K. & Dai, Y. C. (2016). Global diversity and molecular systematics of *Wrightoporia* s. l. (Russulales, Basidiomycota). *Persoonia* 37: 21 – 36. https://doi.org/10.3767/003158516X689666
- Cui, B. K., Li, H. J., Ji, X., Zhou, J. L., Song, J., Si, J., Yang, Z. L. & Dai, Y. C. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. *Fung. Diversity* 97: 137 – 392. https://doi.org/10.1007/s13225-019-00427-4
- Dai, Y. C. (2012). Polypore diversity in China with an annotated checklist of Chinese polypores. *Mycoscience* 53: 49 – 80. https://doi.org/10.1007/ s10267-011-0134-3
- Felsenstein, J. (1985). Confidence intervals on phylogenies: an approach using the bootstrap. *Evolution* 39: 783 – 791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- Gilbertson, R. L. & Ryvarden, L. (1986 1987). North American polypores 1 – 2. Fungiflora, Oslo.
- Guan, Q. X., Zhao, T. J. & Zhao, C. L. (2020). Morphological characters and phylogenetic analyses reveal two new species of *Peniophorella* from southern China. *Mycol. Progr.* 19: 397 – 404. https:// doi.org/10.1007/s11557-020-01568-6
- Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41: 95 – 98.
- Han, M. L., Chen, Y. Y., Shen, L. L., Song, J., Vlasák, J., Dai, Y. C. & Cui, B. K. (2016). Taxonomy and phylogeny of the brown-rot fungi: *Fomitopsis* and its related genera. *Fung. Diversity* 80: 343 – 373. https://doi.org/10.1007/s13225-016-0364-y
- Liu, X. F., Shen, S. & Zhao, C. L. (2019). Morphological and molecular identification of a new species of

Eichleriella (Auriculariales, Basidiomycota) in China. *Phytotaxa* 404: 245 – 254. https://doi.org/ 10.11646/phytotaxa.404.6.3

- Malysheva, V. & Spirin, V. (2017). Taxonomy and phylogeny of the Auriculariales (Agaricomycetes, Basidiomycota) with stereoid basidiocarps. *Fungal Biol.* 121: 689 – 715. https://doi.org/10.1016/ j.funbio.2017.05.001
- McNabb, R. F. R. (1969). New Zealand Tremellales — III. New Zealand J. Bot. 7: 241 – 261. https:// doi.org/10.1080/0028825X.1969.10428596
- Miller, M. A., Holder, M. T., Vos, R., Midford, P. E., Liebowitz, T., Chan, L., Hoover, P. & Warnow, T. (2009). The CIPRES Portals. – CIPRES. http:// www.phylo.org/sub_sections/portal. (Archived by WebCite® at http://www.webcitation.org/ 5imQlJeQa)
- Núñez, M. & Ryvarden, L. (2001). East Asian polypores 2. Syn. Fungorum 14: 165 – 522.
- Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Petersen, J. H. (1996). Farvekort. The Danish Mycological Society's colour-chart. Foreningen til Svampekundskabens Fremme. Greve.
- Pilát, A. (1940). Basidiomycetes chinenses a cel. Emilio Licentio in itineribus per Chinam septentrionalem annis 1914–1936 susceptis, lecti. Ann. Mycol. 38: 61 – 82.
- Roberts, P. (2008). Caribbean heterobasidiomycetes: 3. British Virgin Islands. Mycotaxon 105: 137 – 147.
- Ronquist, F. & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572 – 1574. https:// doi.org/10.1093/bioinformatics/btg180
- Ryvarden, L. & Melo, I. (2014). Poroid fungi of Europe. Syn. Fungorum 31: 1 – 455.
- Song, J., Chen, J. J., Wang, M., Chen, Y. Y. & Cui, B. K. (2016). Phylogeny and biogeography of the remarkable genus *Bondarzewia* (Basidiomycota, Russulales). *Sci. Rep.* 6: 34568. https://doi.org/10.1038/ srep34568
- Swofford, D. L. (2002). PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.
- Wang, R. Z., Yuan, Z. Y., Han, C. Z. & Zhao, C. L. (2020). Morphological and molecular identification of a new species of *Cinereomyces* (Polyporales, Basidiomycota) in southern China. *Phytotaxa* 459: 51 – 60.
- Weiss, M. & Oberwinkler, F. (2001). Phylogenetic relationships in Auriculariales and related groups
 — hypotheses derived from nuclear ribosomal

DNA sequences. *Mycol. Res.* 105: 403 – 415. https://doi.org/10.1017/S095375620100363X

- White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White (eds), *PCR protocols: a guide to methods and applications*, pp. 315 – 322. Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Zhao, C. L. & Wu, Z. Q. (2017). Ceriporiopsis kunmingensis sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Mycol. Progr. 16: 93 – 100. https:// doi.org/10.1007/s11557-016-1259-8

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.