

Vol 87, No 2

14 Mar. 2013

DOI: http://dx.doi.org/10.11646/phytotaxa.87.2

Open Access Subscription Access

Table of Contents

Article

The genus Commelina (Commelinaceae) in Andaman & Nicobar Islands, India with one new species and three new records SANTHOSH NAMPY, SHEBA M. JOSEPH, K.M. MANUDEV

<u>Truncospora macrospora sp. nov. (Polyporales) from Southwest China based on morphological and</u> molecular data CHANG-LIN ZHAO, BAO-KAI CUI

ISSN 1179-3155 (print); ISSN 1179-3163 (online) Published by <u>Magnolia Press</u>, Auckland, New Zealand

Phytotaxa 87 (2): 30–38 (2013) www.mapress.com/phytotaxa/ Copyright © 2013 Magnolia Press

http://dx.doi.org/10.11646/phytotaxa.87.2.2

Truncospora macrospora sp. nov. (Polyporales) from Southwest China based on morphological and molecular data

CHANG-LIN ZHAO & BAO-KAI CUI*

Institute of Microbiology, PO Box 61, Beijing Forestry University, Beijing 100083, China * Corresponding author's e-mail: baokaicui@yahoo.com.cn

Abstract

A new polypore, *Truncospora macrospora*, is described from Southwest China on the basis of morphological and molecular characters. *T. macrospora* is characterized by an annual habit, pileate basidiocarps with a distinct crust, dimitic hyphal system with dextrinoid skeletal hyphae, and large ellipsoid, truncate, strongly dextrinoid basidiospores $(16.5-19.5 \times 8.0-9.5 \ \mu\text{m})$. Molecular study based on sequence data from the nuclear ribosomal ITS and LSU regions supported the position of the new species in *Truncospora*, forming monophyletic lineage with strong support (100% BP, 1.00 BPP). *Truncospora* and *Perenniporiella* were proved to be sister-genera and grouped with other genera of *Perenniporia sensu lato* within the core polyporoid clade. An identification key to the species of *Truncospora* worldwide is provided.

Key words: Molecular phylogeny, Perenniporia, polypore, taxonomy, wood-inhabiting fungi

Introduction

Truncospora Pilát was established by Pilát (1953), and it is typified by *T. ochroleuca* (Berk.) Pilát. The genus is characterized by relatively small, pileate basidiocarps (about 1.5–3 cm long, 2.5–3.5 cm wide, and 1–4 cm thick), indextrinoid to dextrinoid skeletal hyphae, and truncate, strongly dextrinoid basidiospores (Decock 2011, Zhao *et al.* 2013). During the investigations on wood-inhabiting fungi in Southwest China, an undescribed species matching the concepts of *Truncospora* was found. To confirm the affinity of the new taxon to *Truncospora*, phylogenetic analysis was carried out based on ITS and nLSU sequences.

Materials and methods

Morphological studies.—The studied specimens were deposited at the herbarium of the Institute of Microbiology, Beijing Forestry University (BJFC). The microscopic routine followed Dai *et al.* (2010). Sections were studied at magnification up to \times 1000 using a Nikon E80i microscope and phase contrast illumination. Drawings were made with the aid of a drawing tube. Microscopic features, measurements and drawings were made from slide preparations stained with Cotton Blue and Melzer's reagent. Spores were measured from sections cut from the tubes. Presenting the variation in the size of the spores, 5% of measurements were excluded from each end of the range, and were given in parentheses. In the text the following abbreviations were used: IKI = Melzer's reagent, KOH = 5% potassium hydroxide, CB = Cotton Blue, CB+ = cyanophilous, L = mean spore length (arithmetic average of all spores), W = mean spore width (arithmetic average of all spores), Q = variation in the L/W ratios between the specimens studied, n = number of spores measured from given number of specimens. Special color terms followed Petersen (1996).

Molecular procedures and phylogenetic analyses.—The fungal taxa used in this study were listed in Table 1. Phire® Plant Direct PCR Kit (Finnzymes) was used to obtain PCR products from dry specimens, according to the manufacturer's instructions. A small piece of dried fungus was lysed in 30 µl Dilution Buffer for DNA extraction. Nuclear ITS region and partial LSU were amplified with the primer pairs ITS5 (GGA AGT AAA AGT CGT AAC AAG G) and ITS4 (TCC TCC GCT TAT TGA TAT GC) (White *et al.* 1990) and LR0R (ACC CGC TGA ACT TAA GC) and LR7 (TAC TAC CAC CAA GAT CT) (http://www.biology.duke.edu/fungi/mycolab/primers.htm), respectively. The PCR procedure for ITS was as follows: initial denaturation at 98°C for 5 min, followed by 39 cycles at 98°C for 5 s, 58°C for 5 s and 72°C for 5 s, and a final extension of 72°C for 10 min. The only difference of the LSU amplification procedure was its annealing temperature 48°C. DNA sequencing was performed at Beijing Genomics Institute. All newly generated sequences have been submitted to GenBank and were listed in Table 1.

pecies name Sample no.		GenBank accession no.	
		ITS	LSU
Abundisporus fuscopurpureus (Pers.) Ryvarden	Cui 8638	JN048771	JN048790
Abundisporus pubertatis (Lloyd) Parmasto	Dai 12140	JN048772	JN048791
Abundisporus violaceus (Wakef.) Ryvarden	MUCL 38617	FJ411100	FJ393867
Basidioradulum radula (Fr.) Nobles	NH 9453	AF347105	AF347105
Bjerkandera adusta (Willd.) P. Karst.	DAOM 215869	DQ060097	AF287848
Boletopsis leucomelaena (Pers.) Fayod	ID 1527	DQ484064	DQ154112
Byssomerulius corium (Pers.) Parmasto	KHL 8593	AY463389	AY586640
Ceraceomyces violascens (Fr.) Jülich	KHL 11169	EU118611	EU118612
Ceriporia viridians (Berk. & Broome) Donk	KHL 8765	AF347109	AF347109
Ceriporiopsis aneirina (Sommerf.) Domański	MUAF 888	EU340895	EU368503
Donkioporia expansa (Desm.) Kotl. & Pouzar	MUCL 35116	FJ411104	FJ393872
Globulicium hiemale (Laurila) Hjortstam	5444b	DQ873595	DQ873595
Gloeoporus dichrous (Fr.) Bres.	KHL 11173	EU118627	EU118627
Gloeoporus pannocinctus (Romell) J. Erikss.	FCUG 2109	AF141612	AF141612
Hornodermoporus latissima (Berk.) Teixeira	Cui 6625	HQ876604	JF706340
Hornodermoporus martia (Berk.) Teixeira	Cui 7992	HQ876603	HQ654114
Hornodermoporus martia	MUCL 41677	FJ411092	FJ393859
Hornodermoporus martia	MUCL 41678	FJ411093	FJ393860
Hyphoderma capitatum J. Erikss. & Å. Strid	KHL 8464	DQ677491	DQ677491
Hyphoderma orphanellum (Bourdot & Galzin) Donk	NH 12208	DQ677500	DQ677500
Hyphodermella corrugata (Fr.) J. Erikss. & Ryvarden	KHL 3663	EU118630	EU118630
Meruliopsis taxicola (Pers.) Bondartsev	Kuljok 00/75	EU118648	EU118648
Microporellus violaceo-cinerascens (Petch) A. David & Rajchenb.	MUCL 45229	FJ411106	FJ393874
Perenniporia medulla-panis (Jacq.) Donk	MUCL 49581	FJ411088	FJ393876
Perenniporia medulla-panis	MUCL 43250	FJ411087	FJ393875
Perenniporia medulla-panis	Cui 3274	JN112792	JN112793
Perenniporia bannaensis B.K. Cui & C.L. Zhao	Cui 8560	JQ291727	JQ291729
Perenniporia bannaensis	Cui 8562	JQ291728	JQ291730
Perenniporia rhizomorpha B.K. Cui, Y.C. Dai & Decock	Cui 7507	HQ654107	HQ654117
Perenniporia rhizomorpha	Dai 7248	JF706330	JF706348
Perenniporia substraminea B.K. Cui & C.L. Zhao	Cui 10177	JQ001852	JQ001844

TABLE 1. A list of species, specimens and GenBank accession number of sequences used in this study.

..... continued on the next page

Species name	Sample no.	GenBank acco	GenBank accession no.	
		ITS	LSU	
Perenniporia substraminea	Cui 10191	JQ001853	JQ001845	
Perenniporiella chaquenia Robledo & Decock	MUCL 47647	FJ411083	FJ393855	
Perenniporiella chaquenia	MUCL 47648	FJ411084	FJ393856	
Perenniporiella micropora (Ryvarden) Decock & Ryvarden	MUCL43581	FJ411086	FJ393858	
Perenniporiella neofulva (Lloyd) Decock & Ryvarden	MUCL 45091	FJ411080	FJ393852	
Perenniporiella pendula Decock & Ryvarden	MUCL 46034	FJ411082	FJ393853	
Phanerochaete sordida (P. Karst.) J. Erikss. & Ryvarden	KHL 12054	EU118653	EU118653	
Poriodontia subvinosa Parmasto	H 10493	FN907920	FN907920	
Pyrofomes demidoffii (Lév.) Kotl. & Pouzar	MUCL 41034	FJ411105	FJ393873	
Rickenella mellea (Singer & Clem.) Lamoure	Lamoure 74	U66438	U66438	
Trametes elegans (Spreng.) Fr.	Dai 10748	JN048766	JN048785	
Trametes hirsuta (Wulfen) Pilát	Cui 7784	JN048768	JN048787	
Trametes ochracea (Pers.) Gilb. & Ryvarden	PRM 900601	AY684177	AY855908	
Trichaptum abietinum (Dicks.) Ryvarden	FCUG 2581	AF141636	AF141636	
Truncospora detrita (Berk.) Decock	MUCL 42649	FJ411099	FJ393866	
Truncospora macrospora B.K. Cui & C.L. Zhao	Yuan 3777	JX941574ª	JX941597ª	
Truncospora macrospora	Cui 8106	JX941573ª	JX941596ª	
Truncospora ochroleuca (Berk.) Pilát	Cui 8805	JX941575 ^a	JX941591 ^a	
Truncospora ochroleuca	Cui 8818	JX941576ª	JX941592ª	
Truncospora ochroleuca	Cui 8324	JX941577 ^a	JX941593ª	
Truncospora ochroleuca	Cui 8704	JX941578ª	JX941594ª	
Truncospora ochroleuca	Dai 11490	JX941579ª	JX941595ª	
Truncospora ochroleuca	Dai 11809	JX941580ª	JX941598ª	
Truncospora ochroleuca	Cui 8335	JX941581 ª	JX941599ª	
Truncospora ochroleuca	Cui 2780	JX941582ª	JX941600ª	
Truncospora ochroleuca	Cui 7388	IX941583ª	IX941601 ª	
Truncospora ochroleuca	Cui 5671	IX941584ª	IX941602ª	
Truncospora ochroleuca	Cui 5673	IX941585ª	IX941603ª	
Truncospora ochroleuca	Cui 5674	IX941586ª	IX941604ª	
Truncospora ochroleuca	Cui 8870	JX941587 ª	JX941605 ª	
Truncospora ochroleuca	Dai 11711	JX941588ª	JX941606 ª	
Truncospora ochroleuca	Cui 2703	JX941589ª	IX941607 ª	
Truncospora ochroleuca	Dai 11486	HO654105	JF706349	
Truncospora ochroleuca	MUCL 39726	FJ411098	FI393865	
Truncospora ohiensis (Berk.) Pilát	MUCL 41036	FI411096	FI393863	
Truncospora ohiensis	Cui 5714	HO654103	HO654116	
Vanderbylia frazinea (Bull.) D.A. Reid	DP 83	AM269789	AM269853	
Vanderbylia fraxinea	Cui 7154	HO654095	HO654110	
Vanderbylia fraxinea	Cui 8871	JF706329	JF706345	
Vanderbylia fraxinea	Cui 8885	HO876611	IF706344	
Vanderbylia robinionhila (Murrill) $D \land Reid$	Cui 5644	HO876600	IF706342	
Vanderbylia robiniophila	Cui 7144	H0876608	JF706341	
vanderbylia robiniophila	$C_{11} 0174$	HQ876610	JE700341	
vanaeroyua tootmophua Vandarbylia yiqina (Lloyd) D.A. Poid	Cul 9174 MUCL 44770	FI411005	J17700343	
vanaeroyua vicina (Lioyu) D.A. Kelu	WIUCL 44//9	FJ411095	FJ393002	

^a Sequences newly generated in this study.

New sequences were aligned with additional sequences from GenBank (Table 1) using BioEdit (Hall 1999) and ClustalX (Thomson *et al.* 1997). Prior to phylogenetic analysis, ambiguous sequences at the start and the end were deleted and gaps were manually adjusted to optimize the alignment. Sequence alignment was deposited at TreeBase (http://purl.org/phylo/treebase/phylows/study/TB2:S13560?x-access-code=9b8f9e3772b61ed90981422ab29cf727&format=html; submission ID 13560).

Maximum parsimony analysis was applied to the combined dataset of ITS and nLSU sequences. *Boletopsis leucomelaena* (Pers.) Fayod, a member of the Thelephorales, was chosen as the outgroup. The tree construction procedure was performed in PAUP* version 4.0b10 (Swofford 2002). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5,000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap (BT) analysis with 1,000 replicates (Felsenstein 1985). Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each Maximum Parsimonious Tree (MPT) generated.

MrMODELTEST2.3 (Posada & Crandall 1998, Nylander 2004) was used to determine the best-fit evolution model for the combined dataset for Bayesian inference (BI). Bayesian inference was calculated with MrBayes3.1.2 (Ronquist & Huelsenbeck 2003) with a general time reversible (GTR) model of DNA substitution and a gamma distribution rate variation across sites. Four Markov chains were run for 2 runs from random starting trees for 1 million generations, and trees were sampled every 100 generations. The burn-in was set to discard 25% of the trees. A majority rule consensus tree of all remaining trees was calculated. Branches that received bootstrap support for maximum parsimony (MP) and Bayesian posterior probabilities (BPP) greater or equal than 75% (MP) and 0.95 (BPP) respectively were considered as significantly supported.

Results

Taxonomy

Truncospora macrospora B.K. Cui & C.L. Zhao, *sp. nov.* (Figs. 1–2) MycoBank no.: MB 801932

Differs from other *Truncospora* species by annual basidiocarps with a distinct dark brownish crust, a dimitic hyphal system with dextrinoid skeletal hyphae, and larger basidiospores $(16.5-19.5 \times 8.0-9.5 \,\mu\text{m})$.

Type.—CHINA. Yunnan Prov.: Baoshan, Gaoligong Mountains, alt. 2400 m, on fallen angiosperm branch, 25 October 2009, *Cui 8106* (holotype, BJFC!).

Etymology.-macrospora (Lat.) referring to the large basidiospores.

Fruitbody.—Basidiocarps annual, pileate, sessile, solitary, corky to wood corky upon drying. Pileus usually semicircular, projecting up to 1.5 cm, 3.5 cm wide, and 0.5 cm thick at base. Pileal surface clay-buff to orange-brown when fresh, reddish brown to greyish brown when drying, with a distinct dark brownish crust, glabrous; margin obtuse. Pore surface cream to cream buff when fresh, becoming buff upon drying; pores regular, more or less round, 3–4 per mm; dissepiments thick, entire. Sterile margin narrow, cream, up to 1 mm wide. Context cinnamon-buff to buff, soft corky, about 1 mm thick. Tubes concolorous with pore surface, woody hard, up to 4 mm thick.

Hyphal structure.—Hyphal system dimitic; generative hyphae with clamp connections; skeletal hyphae dextrinoid, CB+; hyphae slightly swollen in KOH.

Context.—Generative hyphae infrequent, hyaline, thin-walled, usually unbranched, $3.0-4.5 \mu m$ in diam; skeletal hyphae dominant, hyaline, thick-walled with a wide to narrow lumen, unbranched, interwoven, $4.5-6.5 \mu m$ in diam.

FIGURE 1. Basidiocarps of Truncospora macrospora B.K. Cui & C.L. Zhao sp. nov. from holotype. Scale bars = 1cm.

Tubes.—Generative hyphae infrequent, hyaline, thin-walled, usually unbranched, 2.0–4.0 μ m in diam; skeletal hyphae dominant, hyaline, thick-walled with a wide to narrow lumen, unbranched, interwoven, 3.0–5.5 μ m in diam. Cystidia absent, but fusoid cystidioles present, hyaline, thin-walled, 17–23 × 4.0–5.0 μ m; basidia barrel-shaped, with four sterigmata and a basal clamp connection, 20–29 × 11–15.5 μ m; basidioles dominant, in shape similar to basidia, but slightly smaller.

Spores.—Basidiospores ellipsoid, truncate, hyaline, thick-walled, smooth, strongly dextrinoid, CB+, $(16-)16.5-19.5(-20) \times (7.5-)8.0-9.5(-10) \mu m$, L = 18.2 μm , W = 8.67 μm , Q = 2.07–2.11 (n = 60/2). *Additional specimen examined.*—*Truncospora macrospora*: CHINA. Yunnan Prov.: Baoshan, Gaoligong Mountains, alt. 2450 m, on fallen angiosperm branch, 22 September 2007, *Yuan 3777* (paratype, BJFC!).

FIGURE 2. Microscopic structures of *Truncospora macrospora* B.K. Cui & C.L. Zhao sp. nov. (drawn from the holotype). a Basidiospores. b Basidia and basidioles. c Cystidioles. d Hyphae from trama. e Hyphae from context.

Molecular phylogeny

The combined ITS + nLSU dataset includes sequences from 75 fungal specimens representing 44 taxa. The dataset has an aligned length of 2089 characters in the dataset of which 1285 characters are constant, 184 are variable and parsimony-uninformative, and 620 are parsimony-informative. Maximum Parsimony analysis yielded 88 equally parsimonious trees (TL = 1402, CI = 0.397, RI = 0.705, RC = 0.280, HI = 0.603), and one of the maximum parsimonious trees was shown in Fig. 3. The best model for the combined ITS + nLSU dataset for Bayesian inference was a GTR+I+G model, lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1). Bayesian analysis resulted in a same topology with an average standard deviation of split frequencies = 0.007133.

FIGURE 3. Strict consensus tree illustrating the phylogeny of the new species and related species generated by Maximum Parsimony based on combined ITS + LSU sequences. Parsimony bootstrap values (before the slash markers) higher than 50% and Bayesian posterior probabilities (after the slash markers) more than 0.95 were indicated along branches.

Discussion

Morphologically, *Truncospora macrospora* is characterized by its annual basidiocarps with a distinct dark brownish crust, a dimitic hyphal system with dextrinoid skeletal hyphae, and ellipsoid, truncate, strongly dextrinoid and large basidiospores ($16.5-19.5 \times 8.0-9.5 \mu m$). Phylogenetically, two samples of *T. macrospora* formed a distinct lineage. *T. macrospora* clustered with *T. ochroleuca*, and grouped with *T. detrita* and *T. ohiensis*. Both morphology and rDNA data confirmed that the two samples represent a new species in *Truncospora*.

Until now, five species have been accepted in *Truncospora*. The morphological data for *T. detrita*, *T. macrospora*, *T. oboensis*, *T. ochroleuca* and *T. ohiensis* are listed in Table 2. *T. ochroleuca* may be confused with *T. macrospora* by sharing pileate basidiocarps, similar pore size (2–4 per mm), dextrinoid skeletal hyphae and ellipsoid, truncate, strongly dextrinoid basidiospores; however, *T. ochroleuca* is distinguished from *T. macrospora* by having cream to ochraceous pileus, and smaller basidiospores (14.0–17.0 × 7.0–9.5 μ m, Decock 2011). *T. ohiensis* shares pileate basidiocarps, suff pore surface and dextrinoid basidiospores; however, it differs by its perennial basidiocarps, smaller pores (5–7 per mm), and smaller basidiospores (13.0–16.0 × 7.0–10.0 μ m, Gilbertson & Ryvarden 1987). *T. detrita* is similar to *T. macrospora* by having pileate basidiocarps and smaller basidiospores (10.3–12.5 × 6.2–7.8 μ m, Decock & Ryvarden 1999). *T. obiensis* Decock differs from *T. macrospora* in having white pileus, and smaller basidiospores (11.0–14.0 × 6.5–8.5 μ m, Decock 2011).

Truncospora has been usually treated as a synonym of *Perenniporia* Murrill (Ryvarden 1972, 1991, Gilbertson & Ryvarden 1987, Ryvarden & Gilbertson 1994, Dai *et al.* 2002). Decock & Ryvarden (1999) concluded that *P. detrita*, *P. ochroleuca* and *P. ohiensis* formed a morphologically homogeneous alliance, which could be recognized at the genus level, differing from *Perenniporia* by having relatively small, pileate basidiocarps, unbranched skeletal hyphae and truncate, strongly dextrinoid basidiospores, and the name *Truncospora* would be available for it. Recently, phylogenetic analysis based on rDNA sequence data by Robledo *et al.* (2009) and Zhao *et al.* (2013) showed that these three taxa formed a monophyletic clade distinct from *Perenniporia* sensu stricto, and should be recognized at genus level. In the present study (Fig. 3), *Truncospora* forms a monophyletic entity, is sister to *Perenniporiella* Decock & Ryvarden with a lower support less than 75% MP and 0.95 BPP, and then grouped with other genera of *Perenniporia sensu lato* within the core polyporoid clade, and it is distinct from *Perenniporia sensu stricto*. This indicates that *Truncospora* could be recognized as a separate genus in this group.

Species	Specimens	Basidiospores (µm)	Average (µm)	Pores/mm
T. detrita	Spruce no.49 (Type)	(10.1–)10.1–11.7(–11.7) ´ (5.5–)5.9–7.8(–7.8)	10.9 ´ 6.8	4–5
T. detrita	MUCL 40753	(10.7–)11.0–12.5(–13.0) ´ (6.8–)7.0–7.8(–8.0)	11.9 ´ 7.3	4–5
T. macrospora	Cui 8106 (Type)	(16.5–)17.5–20.0(–22.0) ´ (8.0–)8.5–10.0(–10.5)	18.7 ´ 9.0	3–4
T. macrospora	Yuan 3777	(16.0–)16.5–19.0(–20.0) ´ (7.5–)8.0–9.5(–10.0)	18.0 ´ 8.5	3–4
T. oboensis	MUCL 53565 (Type)	(10.0–)11.0–14.0(–15.0) ´ (6.5–)6.5–8.5(–9.5)	12.7 ´ 7.7	3–4
T. ochroleuca	Swan River 141 (Type)	(12.0–)14.0–17.0(–18.0) ~ 7.0–9.5	15.4 ´ 8.3	3–4
T. ochroleuca	Gilsenius 721	12.0–17 .0´ 7.0–10.0		2–4
T. ochroleuca	Cui 5671	(12.5–)13.0–15.0(–15.5) ´ (7.0–)7.5–9.0(–9.5)	14.5 ´ 8.0	4–5
T. ochroleuca	Cui 8329	(13.0–)13.5–16.0(–17.0) ´ (7.0–)7.5–8.5(–9.0)	15.0 ´ 8.0	3–4
T. ohiensis	RLG 10829	13.0–16 7.0–10.0		5–7
T. ohiensis	Cui 5714	(10.5–)11.0–13.5(–14.0) ´ (6.5–)7.0–8.5(–9.0)	12.5 ´ 7.7	5–7

TABLE 2. Morphological data for Truncospora species.

Key to accepted species of Truncospora worldwide

1.	Basidiocarps with a distinct crust	Truncospora macrospora
-	Basidiocaps without a crust	2
2.	Arboriform skeletal hyphae present	Truncospora detrita
-	Arboriform skeletal hyphae absent	
3.	Pileus white, soft and spongy when fresh	Truncospora oboensis
-	Pileus ochraceous to black, soft corky when fresh	4
4.	Pores 5–7 per mm, pileus light brown to black	Truncospora ohiensis
-	Pores 2–5 per mm, pileus cream to ochraceous	Truncospora ochroleuca

Acknowledgements

The research was financed by the National Natural Science Foundation of China (Project Nos. 31093440 and 30900006) and the Program for New Century Excellent Talents in University (NCET-11-0585).

References

Dai, Y.C., Cui, B.K. & Liu, X.Y. (2010) *Bondarzewia podocarpi*, a new and remarkable polypore from tropical China. *Mycologia* 102: 881–886.

http://dx.doi.org/10.3852/09-050

- Dai, Y.C., Niemelä, T. & Kinnunen, J. (2002) The polypore genera *Abundisporus* and *Perenniporia* (Basidiomycota) in China, with notes on *Haploporus*. *Annales Botanici Fennici* 39: 169–182.
- Decock, C. (2011) Studies in *Perenniporia s.l.* (Polyporaceae): African taxa VII. *Truncospora oboensis* sp. nov., an undescribed species from high elevation, cloud forest of São Tome. *Cryptogamie Mycologie* 32: 383–390.
- Decock, C. & Ryvarden, L. (1999) Studies in *Perenniporia: Perenniporia detrita* and its taxonomic synonyms. *Mycologia* 91: 386–395.

http://dx.doi.org/10.2307/3761384

Felsenstein, J. (1985) Confidence intervals on phylogenetics: an approach using bootstrap. *Evolution* 39: 783–791. http://dx.doi.org/10.2307/2408678

Gilbertson, R.L. & Ryvarden, L. (1987) North American polypores 2. Megasporoporia – Wrightoporia. Fungiflora, Oslo, 437–870 pp.

- Hall, T.A. (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41: 95–98.
- Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Petersen, J.H. (1996) Farvekort. *The Danish Mycological Society's colour-chart*. Foreningen til Svampekundskabens Fremme, Greve. 6 pp. Pilát, A. (1953) Hymenomycetes novi vel minus cogniti Cechoslovakiae II. *Acta Musei Nationalis Pragae* 2: 1–109.

Posada, D. & Crandall, K.A. (1998) Modeltest: Testing the model of DNA substitution. *Bioinformatics* 14: 817–818.

http://dx.doi.org/10.1093/bioinformatics/14.9.817

- Robledo, G.L., Amalfi, M., Castillo, G., Rajchenberg, M. & Decock, C. (2009) *Perenniporiella chaquenia* sp. nov. and further notes on *Perenniporiella* and its relationships with *Perenniporia* (Poriales, Basidiomycota). *Mycologia* 101: 657–673. http://dx.doi.org/10.3852/08-040
- Ronquist, F. & Huelsenbeck, J.P. (2003) MRBAYES 3: bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572–1574.

http://dx.doi.org/10.1093/bioinformatics/btg180

- Ryvarden, L. (1972) Studies on the Aphyllophorales of the Canary Islands with a note on the genus *Perenniporia*. *Nordic Journal of Botany* 19: 139–144.
- Ryvarden, L. (1991) Genera of Polypores. Nomenclature and taxonomy. Fungiflora, Oslo, 363 pp.
- Ryvarden, L. & Gilbertson, R.L. (1994) European polypores 2. Synopsis Fungorum 7: 394-743.

- Thomson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The Clustal_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research* 25: 4876–4882. http://dx.doi.org/10.1093/nar/25.24.4876
- White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: *A guide to methods and applications* (eds. MA Innis, DH Gelfand, JJ Sninsky and TJ White). Academic Press, San Diego, pp. 315–322.
- Zhao, C.L., Cui, B.K. & Dai, Y.C. (2013) New species and phylogeny of *Perenniporia* based on morphological and molecular characters. *Fungal Diversity* 58: 47–60.

http://dx.doi.org/10.1007/s13225-012-0177-6

Swofford, D.L. (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Massachusetts.